На прямой отложены два равных отрезка AC и CBна отрезке. CB взята точка D которая делит его в отношении 3:5,считая от точки C найдите расстояние между A и B еслиDB=15см
Как это нередко бывает, в решении больше рассуждений, чем вычислений. Сделаем рисунок, проведем из А и В перпендикуляры к прямой, так как расстояние от точки до прямой измеряется перпендикулярными отрезками. Обозначим расстояние от А до | АС, от В до | - ВК, точку пересечения АВ с прямой | обозначим О. Рассмотрим рисунок. Получившиеся треугольники АОС и ВОК - прямоугольные по построению и подобны, т.к. если в прямоугольных треугольниках имеется по равному острому углу, то такие треугольники подобны. Здесь равны вертикальные углы при вершине О. Коэффициент подобия треугольников равен отношению соответственных сторон ВК:СА=36:12=3 Следовательно, отношение их гипотенуз ВО:ОА=3 ВО=3АО. АВ=ВО+АО=4АО Найдем и обозначим середину АВ точкой М. Из М опустим на прямую | перпендикуляр МН, являющийся расстоянием от М до прямой | АМ=АВ:2=2 АО. ОМ=АО. Если гипотенуза и острый угол одного прямоугольного треугольника равна гипотенузе и острому углу другого прямоугольного треугольника,то такие треугольники равны. Следовательно, МН=АС=12 см [email protected]
Сделаем рисунок, проведем из А и В перпендикуляры к прямой, так как расстояние от точки до прямой измеряется перпендикулярными отрезками.
Обозначим расстояние от А до | АС, от В до | - ВК,
точку пересечения АВ с прямой | обозначим О.
Рассмотрим рисунок.
Получившиеся треугольники АОС и ВОК - прямоугольные по построению и подобны, т.к. если в прямоугольных треугольниках имеется по равному острому углу, то такие треугольники подобны.
Здесь равны вертикальные углы при вершине О.
Коэффициент подобия треугольников равен отношению соответственных сторон ВК:СА=36:12=3
Следовательно, отношение их гипотенуз
ВО:ОА=3
ВО=3АО.
АВ=ВО+АО=4АО
Найдем и обозначим середину АВ точкой М.
Из М опустим на прямую | перпендикуляр МН, являющийся расстоянием от М до прямой |
АМ=АВ:2=2 АО.
ОМ=АО.
Если гипотенуза и острый угол одного прямоугольного треугольника равна гипотенузе и острому углу другого прямоугольного треугольника,то такие треугольники равны.
Следовательно,
МН=АС=12 см
[email protected]
прямая призма АВСДА1В1С1Д1, в основании ромб АВСД, ВД=5, уголВ=уголД=120, уголА=уголС=180-120=60, ВД -биссектриса угла В, уголАВД=уголДВС=уголВ/2=120/2=60, треугольник АВД равносторонний все углы=60, АВ=ВД=АД=5,
площадь АВСД=АВ в квадрате*sinA=5*5*корень3/2=25*корень3/2,
ВД1-меньшая диагональ, уголД1ВД=45, треугольник Д1АВД прямоугольный, равнобедренный, уголВД1Д=90-уголД1ВД=90-45=45, ВД=Д1Д=5 - высота призмы,
площадь боковой поверхности=периметрАВСД*Д1Д=(4*5)*5=100,
площадь полная=2*площадь основания+ площадь боковой=2*25*корень3/2 + 100=25*корень3+100=25*(корень3+4),
площадь диагонального сечения ВВ1Д1Д=ВД*Д1Д=5*5=25