На поверхні кулі задано три точки. Прямолінійні відстані між ними дорівнюють 18 см, 24 см і 30 см. Знайдіть радіус кулі, якщо відстань від центра кулі до площини, що проходить через ці точки, дорівнює 20 см. Нада розвязок з малюнком
Окружность, уравнение которой x^2+y^2 = 4 - это окружность с центром в начале координат радиусом 2., поскольку уравнение окружности таково: (x - a)^2 + (y - b)^2 = R^2 с центром в точке O(a;b) Радиуса R. Из условия имеем: (x - 0)^2 + (y - 0)^2 = 2^2. Далее, Из условия AB = BM. Рассмотрим это со следующего ракурса: AB = BM - радиусы некоторой окружности. На рисунке как бы мы не проводили хорду АВ, АВ будет равна ВМ и точка М будет лежать на той самой окружности. И хорда АМ большой окружности будет делится надвое радиусом в точке меньшей окружности (B, B1, B2 ... Bn). Получается, множество точек М - это некая окружность с центром B(2;0) радиусом 4. И уравнение такой окружности будет иметь вид: (x-2)^2 + y^2 = 16.
рассмотрим треугольник ahc-прямоуг., равнобедренный ah=ch=x, ac^2=ah^2+ch^2,
2^2=x^2+x^2
4=2x^2
2=x^2
x=корень из 2
рассмотрим треугольник chb, по теореме пифагора
cb^2=ch^2+hb^2
cb^2= 3^2+(корень из 2)^2=9+2=11
cb= корень из 11