Вот пришло в голову решение :) Так-то задачка ерундовая :) Я продлеваю перпендикуляры HK и HM за точку H до пересечения с BA в точке A1 и BC в точке C1 (ну, точки лежат на продолжениях... из за того, что ∠ABC острый, эти точки есть и лежат где положено :) ) Для треугольника A1BC1 H - точка пересечения высот (ну двух-то точно :) - A1M и C1K), поэтому A1C1 перпендикулярно BH, и, следовательно, параллельно AC; то есть ∠BAC = ∠BA1C; Точки K и M лежат на окружности, построенной на A1C1, как на диаметре, поэтому ∠BA1C + ∠KMC = 180°; как противоположные углы вписанного четырехугольника. Или, что же самое, ∠BA1C = ∠BMK; следовательно ∠BAC = ∠BMK; и треугольники ABC и BMK имеют равные углы. То есть, подобны.
Следствие, которое важнее задачи :) Четырехугольник AKMC - вписанный. То есть через эти 4 точки можно провести окружность.
Дополнение. Тривиальный решения тут такой. ∠KHB = ∠A; ∠MHB = ∠C; BK = BH*sin(A) = BC*sin(C)*sin(A); BM = BH*sin(C) = BA*sin(A)*sin(C); То есть у треугольников ABC и MBK угол B общий, и стороны общего угла пропорциональны BM/BA = BK/BC = sin(A)*sin(B); значит треугольники подобны. коэффициент подобия sin(A)*sin(C), что тоже полезное следствие.
1-a - основание столба, b - верхушка столба (= "фонарь"), c - основание дерева, d - верхушка дерева, e - конец тени. cd=1м, ac = 8ш; ce=4ш⇒ae=12ш. из подобия треугольников abe и cde⇒ ab/cd=ae/ce; ab= 3м 2-треугольник авс - прямоугольный. докажем это с применением теоремы пифагора: 41²=40²+9² 1681=1600+81 значит, ас - гипотенуза. в прямоугольном треугольнике центр окружности находится посередине гипотенузы, следовательно, радиус окружности равен 41: 2=20,5 см. ответ: 20,5 см. 3-1)вс^2=4^2+3^2=25 bc=5 2)bc^2=ac*hb 5^2=x*3 25=3x x=25/3 3)по теореме пифагора ас^2+5^2=(25/3)^2 ac^2=625-225/9 ac^2=400/9 ac=20/3 4-опустим из вершины равнобедренного треугольника высоту, которая по известной теореме является медианой и биссектрисой. тогда из получившихся прямоугольных треугольников найдем, что sin(α/2) = (x/2)/b = x/(2b), где x - это длина искомого основания. теперь выразим икс. x = 2b*sin(α/2). 5-опускаем перпендикуляр bd на сторону ac. проекция ab на ac - это ad= ab cos a; проекция bc на ac - это cd= bc cos c. из теоремы синусов ab/sinc=bc/sina=ac/sin(a+c) ab=ac sinc/sin(a+c) bc=ac sina/sin (a+c) следовательно ad=ac sinc cosa/sin(a+c) cd=ac sina cosc/sin(a+c)
Я продлеваю перпендикуляры HK и HM за точку H до пересечения с BA в точке A1 и BC в точке C1 (ну, точки лежат на продолжениях... из за того, что ∠ABC острый, эти точки есть и лежат где положено :) )
Для треугольника A1BC1 H - точка пересечения высот (ну двух-то точно :) - A1M и C1K), поэтому A1C1 перпендикулярно BH, и, следовательно, параллельно AC;
то есть ∠BAC = ∠BA1C;
Точки K и M лежат на окружности, построенной на A1C1, как на диаметре, поэтому
∠BA1C + ∠KMC = 180°; как противоположные углы вписанного четырехугольника. Или, что же самое, ∠BA1C = ∠BMK;
следовательно ∠BAC = ∠BMK;
и треугольники ABC и BMK имеют равные углы. То есть, подобны.
Следствие, которое важнее задачи :) Четырехугольник AKMC - вписанный. То есть через эти 4 точки можно провести окружность.
Дополнение. Тривиальный решения тут такой.
∠KHB = ∠A; ∠MHB = ∠C;
BK = BH*sin(A) = BC*sin(C)*sin(A);
BM = BH*sin(C) = BA*sin(A)*sin(C);
То есть у треугольников ABC и MBK угол B общий, и стороны общего угла пропорциональны BM/BA = BK/BC = sin(A)*sin(B); значит треугольники подобны.
коэффициент подобия sin(A)*sin(C), что тоже полезное следствие.