1)Апофема правильной четырехугольной пирамиды равна 10 см сторона ее основания 16 см.Вычислите площадь боковой поверхности пирамиды. Sбок = (1/2)А*Р. Периметр основания Р = 4*16 = 64 см. Sбок = (1/2)*10*64 = 320 см².
2)Основа прямой призмы - прямоугольный треугольник с катетом 4 см и гипотенузой 5 см.Высота призмы равна 6 см.Найдите площадь полной поверхности призмы. S = 2*So + Sбок. Sо = (1/2)а*в. Для определения Sо надо найти второй катет в: в = √(с² - а²) = √(5² - 4²) = √(25-16) = √9 = 3 см. Sо = (1/2)4*3 = 6 см². Sбок =Р*Н. Периметр Р = 3+4+5 = 12 см. Sбок = 12*6 = 72 см². Тогда площадь полной поверхности призмы равна: S = 2*6 + 72 = 12 + 72 = 84 см².
Так как угол ADB = 90°, а его гипотенуза равна 24 и он является равнобедренным, мы можем найти его катеты из формулы Пифагора 24 = корень из x*x+x*x[ИКС в квадрате + ИКС в квадрате] 24*24[24 в квадрате] = 596 - это сумма квадратных ИКСов под корнем делим 596 на 2[так как икса у нас два] получаем 288 - это ИКС в квадрате, или 12√2 (см) x=AD=BD=12√2 (см) Далее находим DO (O - центр AB). Угол DOC = 60°(это угол между плоскостями треугольников). DO = √BD*DB - OB*OB = √288 - 144 = 12 (см) Далее находим CO CO = √CB*CB - OB*OB = √400 - 144 = √256 = 16 (см) a*a + b*b - 2*a*b*cos a - эта формула звучит как 'a' в квадрате + 'b' в квадрате - удвоенное произведение 'a' и 'b', умноженное на косинус угла между ними (по ней можно найти 3-ю сторону) То есть эта формула из треугольника DCO, подставляем известные данные и находим третью сторону: √16*16 + 12*12 - 2*16*12*cos60° = √256 + 144 - 2*16*12*(1/2) = √256 + 144 - 192 = √208 = 4√13 (см) ОТВЕТ: 4√13 см
думаю решил без ошибок, но вам лучше пересчитать всё, людям свойственны ошибки :)
Sбок = (1/2)А*Р.
Периметр основания Р = 4*16 = 64 см.
Sбок = (1/2)*10*64 = 320 см².
2)Основа прямой призмы - прямоугольный треугольник с катетом 4 см и гипотенузой 5 см.Высота призмы равна 6 см.Найдите площадь полной поверхности призмы.
S = 2*So + Sбок.
Sо = (1/2)а*в.
Для определения Sо надо найти второй катет в:
в = √(с² - а²) = √(5² - 4²) = √(25-16) = √9 = 3 см.
Sо = (1/2)4*3 = 6 см².
Sбок =Р*Н.
Периметр Р = 3+4+5 = 12 см.
Sбок = 12*6 = 72 см².
Тогда площадь полной поверхности призмы равна:
S = 2*6 + 72 = 12 + 72 = 84 см².
24 = корень из x*x+x*x[ИКС в квадрате + ИКС в квадрате]
24*24[24 в квадрате] = 596 - это сумма квадратных ИКСов под корнем
делим 596 на 2[так как икса у нас два] получаем 288 - это ИКС в квадрате, или 12√2 (см)
x=AD=BD=12√2 (см)
Далее находим DO (O - центр AB). Угол DOC = 60°(это угол между плоскостями треугольников).
DO = √BD*DB - OB*OB = √288 - 144 = 12 (см)
Далее находим CO
CO = √CB*CB - OB*OB = √400 - 144 = √256 = 16 (см)
a*a + b*b - 2*a*b*cos a - эта формула звучит как 'a' в квадрате + 'b' в квадрате - удвоенное произведение 'a' и 'b', умноженное на косинус угла между ними (по ней можно найти 3-ю сторону)
То есть эта формула из треугольника DCO, подставляем известные данные и находим третью сторону:
√16*16 + 12*12 - 2*16*12*cos60° = √256 + 144 - 2*16*12*(1/2) = √256 + 144 - 192 = √208 = 4√13 (см)
ОТВЕТ: 4√13 см
думаю решил без ошибок, но вам лучше пересчитать всё, людям свойственны ошибки :)