1-случай. Если первый угол в вершине 48°, то второй угол 66.°
2-случай. Если первый угол на основании ∠A=∠C=48°, то второй угол 84°.
Объяснение:
Пусть в треугольнике ΔABC равнобедренный. Пусть ∠B - угол в вершине, тогда углы, противолежащие равным сторонам равнобедренного треугольника, равны между собой, то есть углы на основании равны: ∠A=∠C.
1-случай. Пусть ∠B=48°. Сумма внутренних углов треугольник равна 180°=∠A+∠C+∠B, отсюда ∠A+∠C=180°-∠B=180°-48°=132°. Но ∠A=∠C и поэтому ∠A=∠=132°:2=66.°
2-случай. Пусть ∠A=∠C=48°. Тогда ∠B=180°-∠A-∠B=180°-48°-48°= =180°-96°=84°.
Угол равный 60градусов будет лежать против стороны равной 5 см, т. к. этот угол меньше 90 градусов. значит второй угол образованный этими диагоналями равен 120 гр. (т. к. вместе они образуют развернутый угол) пусть прямоугольник будет АВСД, точка пересечения диагоналей О, тогда в треугольнике АОВ опускаем высоту ОК, т. к. треугольник равносторонний, то ОК будет и медианой и биссектрисой полученный угол КОА будет равен 30 гр. а отрезки ВК и АК равны по 2,5 см. По правилу "сторона лежащая против угла в 30 гр равна половине гипотенузы"(в треугольнике АОК) следует, что гипотенуза т. е. сторона АО равна двум длинам стороны АК, т. е. АО равна 5 см. У диагонали АС точка О является ее центром симметрии, значит АС равна 10 см Теперь рассмотрим треугольник АСВ, в котором нам известно: АВ рана 5 см, АС = 10 см. Треугольник прямоугольный. По теореме Пифагора сторона ВС2 = АС2(в квадрате) - АВ2. отсюда следует ВС равна 5корень из5 площадь прямоугольника равна АВ умножить на ВС, т. е. выходит S=5*5 корень из 5=25к орень из 5
1-случай. Если первый угол в вершине 48°, то второй угол 66.°
2-случай. Если первый угол на основании ∠A=∠C=48°, то второй угол 84°.
Объяснение:
Пусть в треугольнике ΔABC равнобедренный. Пусть ∠B - угол в вершине, тогда углы, противолежащие равным сторонам равнобедренного треугольника, равны между собой, то есть углы на основании равны: ∠A=∠C.
1-случай. Пусть ∠B=48°. Сумма внутренних углов треугольник равна 180°=∠A+∠C+∠B, отсюда ∠A+∠C=180°-∠B=180°-48°=132°. Но ∠A=∠C и поэтому ∠A=∠=132°:2=66.°
2-случай. Пусть ∠A=∠C=48°. Тогда ∠B=180°-∠A-∠B=180°-48°-48°= =180°-96°=84°.
значит второй угол образованный этими диагоналями равен 120 гр. (т. к. вместе они образуют развернутый угол)
пусть прямоугольник будет АВСД, точка пересечения диагоналей О,
тогда в треугольнике АОВ опускаем высоту ОК, т. к. треугольник равносторонний, то ОК будет и медианой и биссектрисой
полученный угол КОА будет равен 30 гр. а отрезки ВК и АК равны по 2,5 см.
По правилу "сторона лежащая против угла в 30 гр равна половине гипотенузы"(в треугольнике АОК) следует, что гипотенуза т. е. сторона АО равна двум длинам стороны АК, т. е. АО равна 5 см.
У диагонали АС точка О является ее центром симметрии, значит АС равна 10 см
Теперь рассмотрим треугольник АСВ, в котором нам известно: АВ рана 5 см, АС = 10 см. Треугольник прямоугольный.
По теореме Пифагора сторона ВС2 = АС2(в квадрате) - АВ2. отсюда следует ВС равна 5корень из5
площадь прямоугольника равна АВ умножить на ВС, т. е. выходит S=5*5 корень из 5=25к орень из 5