На крыше дома и на фонарном столбе находится по одному голубю. Анна недалеко от дома рассыпала зёрна. Оба голубя одновременно и с одинаковой скоростью отправились в полёт и одновременно подлетели к зерну. Расcчитай, на каком расстоянии от дома Анна рассыпала зерно, если известно, что высота дома равна 24 м, высота фонаря — 7 м. Фонарь находится от дома на расстоянии 31 м.
Эти треугольники попарно подобны (по вертикальным углам при пересечении диагоналей) по равенству двух вписанных углов, опирающихся на равные дуги.
Обозначим точку пересечения диагоналей Е, центр описанной около четырёхугольника окружности О.
Из подобия треугольников АВЕ и ДЕС следует АЕ:ЕД = 3:4.
Примем коэффициент подобия у.
Тогда 8² = (3у)² + (4у)²,
9у² + 16у² = 64,
25у² = 64,
у = √(64/25) = 8/5.
Получаем: АЕ = 3х = 24/5 = 4,8.
ДЕ = 4х = 32/5 = 6,4.
Угол АВД как вписанный равен (1/2) центрального угла АОД.
Синус (1/2) центрального угла АОД равен (8/2)/(17/2) = 4/8,5 = 0,470588. Угол АBД равен 0,489957 радиан или 28,07249°.
Косинус угла ЕАД = 4,8/8 = 0,6.
Угол ЕАД = 0,927295 радиан или 53,1301°.
Угол АДЕ = 90° - 53,1301 = 36,8699°.
По теореме синусов находим АB = AD*sin АДЕ / sin АBД =
= 8*0,6/ 0.470588 = 10,2.
Сторона ДС по заданию равна (4/3) АВ = (4/3)*10,2 = 13,6.
ВЕ = √10,2²-4,8²) = √( 104.04 - 23.04) = √81 = 9.
СЕ = √(13,6²-6,4²) = √( 184.96 - 40.96) = √144 = 12.
ВС = √(9²+12²) = √(81+144) = √= 15.
Если такого рода рассуждения для Вас сложны, проведите сечение конуса плоскостью, проходящей через высоту, радиус основания, высота и образующая образуют прямоугольный равнобедренный треугольник с катетом 7, значит высота маленького конуса с маленьким радиусом основания и маленькой образующей также образуют прямоугольный равнобедренный треугольник с вертикальным катетом 4. значит, горизонтальный катет, а он и есть радиус маленькой окружности, тоже равен 4