На клетчатой бумаге нарисован квадрат 30x30 , все стороны (их длины равны 30) которого идут по линиям сетки. какое наименьшее число прямых, не параллельных линиям сетки, нужно провести, чтобы вычеркнуть все узлы, находящиеся на границе или внутри квадрата?
1. Треуголой АВ в точке касания.
АО - гипотенуза. Катет ОВ=0,5*АО, значит <ВАО=30°, а <ВОА=60° (сумма острых углов треугольника равна 90°).
То же самое и с треугольником АОС, так как АС=АВ (касательные из одной точки равны), а ОС=ОВ - радиус окружности.
Следовательно, <COA=60°, а <BOC=<BOA+<COA=120°.
ответ: <BOC=120°
2. Радиус перпендикулярен касательной в точке касания.
Треугольник АОВ равнобедренный (АО=ВО - дано), значит высота, проведенная к основанию (в точку касания)=медиана
и делит АВ пополам. R=6.
Тогда по Пифагору
АО=√(6²+8²)=10 ед.
3. Периметр треугольника АВС=АМ+МВ+ВN+NC+CK+KA.
Но АМ=АК, BM=BN, CN=CK - как касательные из одной точки.
Значит Pabc=2*5+2*4+2*8=24 ед.
4. Отрезок ОD перпендикулярен касательной CD в точке касания.
Прямоугольные треугольники АКО и CDO подобны по острому углу, так как <DCO=<OAK - накрест лежащие при параллельных СD и AE.
OD=OA=(1/2)*AB=5 как радиусы.
Из подобия имеем: OC/OA=OD/OK=5/4. => ОС=5*5/4= 6,25см.
ответ: ОС=6,25 ед.
Дано:
АВСD - прямоугольник,
АВ = 15 сантиметров,
ВС/СD/DА = 2 /3 /4,
Р авсd = 60 сантиметров.
Найти длины сторон прямоугольника: ВС, СD, DА - ?
1) Рассмотрим прямоугольник АВСD.
Так как Р авсd = 60 сантиметров, то ВС + СD + DА = Р авсd - АВ;
ВС + СD + DА = 60 - 15;
ВС + СD + DА = 45 сантиметров;
2) Пусть длина стороны ВС = 2 * х сантиметров, длина стороны СD = 3 * х сантиметров, длина стороны DА = 4 * х сантиметров. Нам известно, что ВС + СD + DА = 45 сантиметров. Тогда
2 * х + 3 * х + 4 * х = 45;
9 * х = 45;
х = 45 : 9;
х= 5;
3) 2 * 5 = 10 сантиметров - ВС;
4) 3 * 5 = 15 сантиметров - СD ;
5) 4 * 5 = 20 сантиметров - DА.
ответ: 10 сантиметров; 15 сантиметров; 20 сантиметров