• 3. Теперь, мы узнаём сторону квадрата. Это записывается так:
3)900 : 4 = 225 ( м ) – сторона квадрата
• 4. А теперь, мы можем узнать площадь квадрата, и потом в пятом действии записать и сравнить, чья площадь больше – квадрата или прямоугольника. Но смотря, какая у вас программа : если у вас программа Л.Г. Петерсона, то записывать нужно, но, а если у вас программа Рудницкой или Моро и др., то не нужно. Это записывается так:
4)225 ˣ 225 = 50 625 ( м² )
• 5. А вот когда мы узнали площадь квадрата и прямоугольника, то мы можем сравнить, чья площадь больше. Это записывается так:
5)50 625 > 32 400
• или...
5)32 400 < 50 625
• 6. А вот на сколько площадь квадрата больше площади прямоугольника мы не знаем. Но мы можем решить! Для этого нам нужно:
6)50 625 – 32 400 = 18 225 ( м )
— | Мы узнали то, что площадь квадрата больше площади прямоугольника. И на сколько. Мы можем записать ответы. ответы, потому что у нас в данной задаче два во ответ: Площадь участка квадратной формы больше площади участка прямоугольной формы; на 18 225 м площадь участка квадратной формы больше площади участка прямоугольной формы.
1)Сумма острых углов прямоугольного треугольника равна 90 градусам. Значит что бы найти один из острых углов надо от 90 отнять известный угол.
2)В равнобедренном прямоугольном треугольнике острые углы одинаковы,значит каждый угол будет по 45°
4)Сумма смежных углов равна 180°. Что бы найти неизвестный смежный угол нужно от 180 отнять известный угол. Из этого мы получаем,что угол СDA равен 110°. Что бы найти угол АСD мы вспоминаем что сумма острых углов в прямоугольном треугольнике равна 90°. От 90 отнимаем 70,получаем 20. Из чертежа мы видим что угол ACD и BCD одинаковы. Значит нужный нам ACD тоже 20°. Далее вспоминаем,что сумма всех углов треугольника равна 180°. От 180 отнимаем сумму двух известных нам углов. 180-(110+20)=50°
` ` — Здравствуйте, Levva007! ` `
• Объяснение:
— | Прежде чем нам решить данную задачу, сначала нужно отметить в ней главные слова: | —
• Первый участок имеет форму прямоугольника со сторонами 360 м и 90 м, второй участок имеет форму квадрата.
— | Отметили. Теперь, когда мы знаем главные слова в данной задаче, мы можем начать её решать. | —
• Решение:
• 1. Сначала, мы с вами должны узнать площадь прямоугольника. Это записывается так:
1)360 ˣ 90 = 32 400 ( м² ) – площадь прямоугольника.
• 2. Теперь, мы можем узнать периметр прямоугольника. Это записывается так:
2)360 ˣ 2 + 90 ˣ 2 = 900 ( м ) – периметр прямоугольника
• 3. Теперь, мы узнаём сторону квадрата. Это записывается так:
3)900 : 4 = 225 ( м ) – сторона квадрата
• 4. А теперь, мы можем узнать площадь квадрата, и потом в пятом действии записать и сравнить, чья площадь больше – квадрата или прямоугольника. Но смотря, какая у вас программа : если у вас программа Л.Г. Петерсона, то записывать нужно, но, а если у вас программа Рудницкой или Моро и др., то не нужно. Это записывается так:
4)225 ˣ 225 = 50 625 ( м² )
• 5. А вот когда мы узнали площадь квадрата и прямоугольника, то мы можем сравнить, чья площадь больше. Это записывается так:
5)50 625 > 32 400
• или...
5)32 400 < 50 625
• 6. А вот на сколько площадь квадрата больше площади прямоугольника мы не знаем. Но мы можем решить! Для этого нам нужно:
6)50 625 – 32 400 = 18 225 ( м )
— | Мы узнали то, что площадь квадрата больше площади прямоугольника. И на сколько. Мы можем записать ответы. ответы, потому что у нас в данной задаче два во ответ: Площадь участка квадратной формы больше площади участка прямоугольной формы; на 18 225 м площадь участка квадратной формы больше площади участка прямоугольной формы.
` ` — С уважением, EvaTheQueen! ` `
1)53
2)45;45
4)50
Объяснение:
1)Сумма острых углов прямоугольного треугольника равна 90 градусам. Значит что бы найти один из острых углов надо от 90 отнять известный угол.
2)В равнобедренном прямоугольном треугольнике острые углы одинаковы,значит каждый угол будет по 45°
4)Сумма смежных углов равна 180°. Что бы найти неизвестный смежный угол нужно от 180 отнять известный угол. Из этого мы получаем,что угол СDA равен 110°. Что бы найти угол АСD мы вспоминаем что сумма острых углов в прямоугольном треугольнике равна 90°. От 90 отнимаем 70,получаем 20. Из чертежа мы видим что угол ACD и BCD одинаковы. Значит нужный нам ACD тоже 20°. Далее вспоминаем,что сумма всех углов треугольника равна 180°. От 180 отнимаем сумму двух известных нам углов. 180-(110+20)=50°