На ділянці шляху довжиною 320 м підйом однаковий. На кінцях ділянки стоять позначки 186,5 м і 194,9 м. Яка позначка має бути на відстані 120 м від меншої позначки (186,5 м)?
1) Опустим перпендекуляр на ось Х и получим точку с координатами (6;0;0)
Тогда расстояние до оси х есть расстояние между точками с координатами (6; 3; 4) и (6;0;0), считается по формуле √((6-6)²+(0-3)²+(0-4)²) = √(9+16)=√25 = 5
2) Аналогично и с другими осями ищем расстояния между точками (6; 3; 4) и (0;3;0) . √((6-0)²+(3-3)²+(0-4)²) =√(36+16) = √52
3)(6; 3; 4) и (0;0;4) здесь √((6-0)²+(3-0)²+(4-4)²) =√(36+9) = √45
4) Теперь надо опустить перпендикуляр на плоскость Х, получим точку пересечения с плоскость с координатами (6; 3; 0), опять также по формуле ищем расстояние между двумя точками(6; 3; 4) и(6;3;0) , получаем √((6-6)²+(3-3)²+(0-4)²) = √16 = 4
5) На плоскость (УОZ), точка будет (0;3;4), тогда расстояние будет
√((0-6)²+(3-3)²+(4-4)²) = √36 = 6
6) На плоскость (ХОZ), точка будет (6;0;4), тогда расстояние будет
Обозначим проекцию апофемы на основание за х.
Тогда проекция боковой стороны на основание будет 2х.
По Пифагору имеем - боковая сторона L равна:
L = √((2x)² + (√3)²) = √(4x² + 3).
Апофема А равна √(x² + (√3)²) = √(x² + 3).
Высота треугольника основания равна 3х.
Тогда сторона основания а = 3x/cos 30° = 3x/(√3/2) = 6x/√3 = 2√3x.
Но, так как сторона основания - это гипотенуза при двух катетах L, то можно выразить: a = √(2L²) = L√2 = √(4x² + 3)*√2 = √(8x² + 6).
Приравняем: √(8x² + 6) = 2√3x. Возведём в квадрат:
8x² + 6 = 12x или 4x² = 6 или 2x² = 3.
Отсюда находим х = √(3/2).
Теперь можно определить длину стороны основания, подставив значение х: а = 2√3*(√(3/2)) = 3√2.
Площадь основания So = a²√3/4 = 18√3/4 = 9√3/2 кв.ед.
ответ: V = (1/3)SoH = (1/3)*(9√3/2)*√3 = (9/2) куб.ед.
Відповідь:
1) Расстояние от точки A до оси OX — 5
2) Расстояние от точки A до оси OY — √52
3) Расстояние от точки A до оси OZ — √45
4) Расстояние от точки A до плоскости (XOY) — 4
5) Расстояние от точки A до плоскости (YOZ) — 6
6) Расстояние от точки A до плоскости (XOZ) — 3
Пояснення:
1) Опустим перпендекуляр на ось Х и получим точку с координатами (6;0;0)
Тогда расстояние до оси х есть расстояние между точками с координатами (6; 3; 4) и (6;0;0), считается по формуле √((6-6)²+(0-3)²+(0-4)²) = √(9+16)=√25 = 5
2) Аналогично и с другими осями ищем расстояния между точками (6; 3; 4) и (0;3;0) . √((6-0)²+(3-3)²+(0-4)²) =√(36+16) = √52
3)(6; 3; 4) и (0;0;4) здесь √((6-0)²+(3-0)²+(4-4)²) =√(36+9) = √45
4) Теперь надо опустить перпендикуляр на плоскость Х, получим точку пересечения с плоскость с координатами (6; 3; 0), опять также по формуле ищем расстояние между двумя точками(6; 3; 4) и(6;3;0) , получаем √((6-6)²+(3-3)²+(0-4)²) = √16 = 4
5) На плоскость (УОZ), точка будет (0;3;4), тогда расстояние будет
√((0-6)²+(3-3)²+(4-4)²) = √36 = 6
6) На плоскость (ХОZ), точка будет (6;0;4), тогда расстояние будет
√((6-6)²+(0-3)²+(4-4)²) = √9 = 3