Из правильного треугольника АВС: из теоремы Пифагора: высота ВК равна 3 корня из 2. Угол ОАК - это угол между плоскостью АОС и основанием. Поскольку угол ОАК = 30 градусов, то катет ОК равен гипотенузы ОА как катет, который лежит против угла 30 градусов. ОК = ОА/2. Пускай ОК = х, тогда ОА = 2х. Из прямоугольного треугольника ОАК: за теоремой Пифагора: OA^2 = OK^2 + AK^2, 4x^2 = 9 - x^2, 3x^2 = 9, x^2 = 3, x = корень из 3. OK = корень из 3. Объем призмы равен площади основания умножить на высоту: S = So*H = S(ABC)*OK = BK*AC/2*OK = 9 корней из 6.
Две точки на сторонах параллелограмма соединили с тремя его вершинами так, как показано на рисунке. Докажите, что сумма площадей оранжевых треугольников равна сумме площадей голубых треугольников.
Объяснение:
Площадь треугольника с синими и белыми частями равна
S( бел часть)+S₁+S₂=1/2*S(паралл.) (*),
а площадь треугольника с синими и желтыми частями равна
S( бел часть)+S₃+S₄=1/2*S(паралл.)(**) .
Тк правые части (*) и(**) одинаковые , то
S( бел часть)+S₁+S₂=S( бел часть)+S₃+S₄ ⇒
S₁+S₂=S₃+S₄ , те сумма площадей оранжевых треугольников равна сумме площадей голубых треугольников.
Если концы одной из сторон параллелограмма соединить с произвольной точкой противоположной стороны , то площадь полученного треугольника равна половине площади параллелограмма.
Две точки на сторонах параллелограмма соединили с тремя его вершинами так, как показано на рисунке. Докажите, что сумма площадей оранжевых треугольников равна сумме площадей голубых треугольников.
Объяснение:
Площадь треугольника с синими и белыми частями равна
S( бел часть)+S₁+S₂=1/2*S(паралл.) (*),
а площадь треугольника с синими и желтыми частями равна
S( бел часть)+S₃+S₄=1/2*S(паралл.)(**) .
Тк правые части (*) и(**) одинаковые , то
S( бел часть)+S₁+S₂=S( бел часть)+S₃+S₄ ⇒
S₁+S₂=S₃+S₄ , те сумма площадей оранжевых треугольников равна сумме площадей голубых треугольников.
Если концы одной из сторон параллелограмма соединить с произвольной точкой противоположной стороны , то площадь полученного треугольника равна половине площади параллелограмма.
Доказательство.
S( треуг)=1/2*AD*BH =1/2*(AD*BH)=1/2*S( паралл.)