На аркуші паперу в клітинку зобразіть довільний багатокутник та побудуйте багатокутник:
А) симетричний відноно точки поза ним
Б) симетричний відносно точки в ньому
В)симетричний відносно прямої, що його не претинає
Г) симетричний відносно прямої, що його перетинає
Д) повернутий на кут 90 за годинниковою стрілкою
Е) паралельно переміщений
Боковое ребро AA1 образует со сторонами основания AB и AD равные углы 60.
Возьмем на ребре AA1 точку T и опустим перпендикуляры на стороны: TK⊥AB, TN⊥AD
△TAK=△TAN по гипотенузе и острому углу => AK=AN
Опустим перпендикуляр TH на плоскость основания.
По теореме о трех перпендикулярах HK⊥AB, HN⊥AD
AKHN - квадрат
Диагональ AH квадрата AKHN лежит на диагонали AC квадрата основания. Перпендикуляр из T падает на AC, следовательно перпендикуляр из A1 - высота призмы - также падает на AC.
Пусть AN=1, тогда AT=AN/cos60=2, AH=AN/cos45=√2
=> cosTAH =AH/AT =√2/2 => ∠TAH=45 =∠A1AC
Диагональное сечение AA1C1C содержит высоту, следовательно перпендикулярно основанию.
S(AA1C1C) =AC*h (h - высота из A1)
32 =4√2*h => h =4√2
(Поскольку высота из A1 образует с вершиной A треугольник c углами 45, 90 - равнобедренный - видим, что она падает в точку С.)
AA1 =h/sin45 =4√2*√2 =8 =BB1
AC⊥BD (диагонали квадрата) => AA1⊥BD (т о трех перпендикулярах)
=> BB1⊥BD, BB1D1D - прямоугольник
S(BB1D1D) =BB1*BD =8*4√2 =32√2 (см^2)
34 см
Объяснение:
Дано: ABCD - параллелограмм
BM = DC = 7 см, MD = 3 см, ∠ABM=60°.
Найти: Р
1. BM = DC (условие)
Противоположные стороны параллелограмма равны.АВ = DC
⇒ BM = DC = АВ = 7см
2. Рассмотрим ΔАВМ.
BM = АВ = 7 см (п.1)
⇒ ΔАВМ - равнобедренный
Углы при основании равнобедренного треугольника равны.⇒ ∠А=∠1
Сумма углов треугольника равна 180°.⇒ ∠А=∠1=(180°-∠АВМ):2=60°
В равностороннем треугольнике углы равны 60°.⇒ ΔАВМ - равносторонний.
⇒АВ = АМ = 7см
3. Найдем периметр:
Периметр - сумма длин всех сторон.АВ = CD = 7 см; АD = ВС = 3+7 = 10 (см)
Р = 10+10+7+7=34 (см)