Расстояние от точки до плоскости есть перпендикуляр, опущенный из этой точки к плоскости. Следовательно АА₁⊥α, ВВ₁⊥α (смотри прикрепленный рисунок). Поскольку прямые АА₁ и ВВ₁ перпендикулярны плоскости α, то между собой они параллельны и образуют одну плоскость (через две параллельные прямые проходит плоскость и при чем только одна). Назовем ее β. Отрезок АВ тоже лежит в плоскости β, т. к. имеет с ней две общие точки (Если две точки прямой (отрезка) лежат в данной плоскости, то и вся прямая (отрезок) лежит в данной плоскости). Плоскость β пересекает плоскость α по прямой А₁В₁. Опустим из точки М перпендикуляр на плоскость α. ММ₁ будет параллельна прямым АА₁ и ВВ₁. Точка М₁ - точка пересечения ММ₁ с плоскостью α - будет лежать на прямой А₁В₁. (Это доказывается от противного. Если точка М₁ не лежит на прямой А₁В₁, то ММ₁ пересекает плоскость β. Поскольку ММ₁║АА₁, то и АА₁ тоже будет пересекать плоскость β. Получаем противоречие, т. к. АА₁ лежит в плоскости β. Значит Точка М₁ лежит на отрезке А₁В₁.) В плоскости β получаем четырехугольник АВА₁В₁, у которого две противоположные стороны параллельны. Следовательно этот четырехугольник - трапеция с основаниями АА₁ и ВВ₁. Так как основания трапеции перпендикулярны боковой стороне, то трапеция является прямоугольной. ММ₁ - средняя линия, т.к. М - середина отрезка АВ и параллельна основаниям. Значит и точка М₁ середина стороны А₁В₁.
Противоположные стороны параллелограмма равны.
AD = BC = 30,2 см
AB = CD = 13,3 см
Объяснение:
Диагонали параллелограмма точкой пересечения делятся пополам, =>
АО = ОС = АС / 2 = 20 см
BO = OD = BD /2 = 12 см
Из ΔАВО по теореме косинусов:
АВ² = АО² + ВО² - 2АО·ВО·cos40°
AB² = 400 + 144 - 2 · 20 · 12 · 0,766 ≈ 176,32
AB = 13,3 см
∠ВОС = 180° - 40° = 140° (так как, они смежные)
Из треугольника ВОС по теореме косинусов:
BC² = BO² + CO² - 2BO·CO·cos140°
BC² = 144 + 400 - 2 · 12 · 20 · (- 0,766) ≈ 911,68
BC = 30,2 см
Следовательно АА₁⊥α, ВВ₁⊥α (смотри прикрепленный рисунок).
Поскольку прямые АА₁ и ВВ₁ перпендикулярны плоскости α, то между собой они параллельны и образуют одну плоскость (через две параллельные прямые проходит плоскость и при чем только одна). Назовем ее β.
Отрезок АВ тоже лежит в плоскости β, т. к. имеет с ней две общие точки (Если две точки прямой (отрезка) лежат в данной плоскости, то и вся прямая (отрезок) лежит в данной плоскости).
Плоскость β пересекает плоскость α по прямой А₁В₁.
Опустим из точки М перпендикуляр на плоскость α.
ММ₁ будет параллельна прямым АА₁ и ВВ₁.
Точка М₁ - точка пересечения ММ₁ с плоскостью α - будет лежать на прямой А₁В₁.
(Это доказывается от противного. Если точка М₁ не лежит на прямой А₁В₁, то ММ₁ пересекает плоскость β. Поскольку ММ₁║АА₁, то и АА₁ тоже будет пересекать плоскость β. Получаем противоречие, т. к. АА₁ лежит в плоскости β. Значит Точка М₁ лежит на отрезке А₁В₁.)
В плоскости β получаем четырехугольник АВА₁В₁, у которого две противоположные стороны параллельны. Следовательно этот четырехугольник - трапеция с основаниями АА₁ и ВВ₁.
Так как основания трапеции перпендикулярны боковой стороне, то трапеция является прямоугольной.
ММ₁ - средняя линия, т.к. М - середина отрезка АВ и параллельна основаниям. Значит и точка М₁ середина стороны А₁В₁.
ответ: ММ₁ = 8 см.