В треугольнике ABC с угла B Проведена прямая BD. Найдите отношение P(∆BDC)/P(∆ABC), если ∠ABC=∠BDC, AB=8, AC=12, DC=3. Надо найти сторону BD и периметры ∆ ABC и ∆ BDC .
ответ: 1 : 2 , 4 , 26 , 13 .
Объяснение:
ΔCDB ~ ΔCBA ( по первому признаку подобия) и почти конец
воспользуемся следующий признаокм: " если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны".
треугольник авс - равнобедренный.
отсюда следует, что медиана bd - также является биссектрисой угла авс. то есть угол mbd = углу dbn.
по условию bm = bn. bd - общая сторона.
таким образом треугольники mbd = треугольнику dbn по двум сторонам и углу между ними.
В треугольнике ABC с угла B Проведена прямая BD. Найдите отношение P(∆BDC)/P(∆ABC), если ∠ABC=∠BDC, AB=8, AC=12, DC=3. Надо найти сторону BD и периметры ∆ ABC и ∆ BDC .
ответ: 1 : 2 , 4 , 26 , 13 .
Объяснение:
ΔCDB ~ ΔCBA ( по первому признаку подобия) и почти конец
∠BDC= ∠ABC ← условие
∠C _общий угол
BC/AC =DC/BC = BD / AB =P(∆BDC)/P(∆ABC)
BC² =AC *DC=12*3 =36 ⇒ BC=6 ; P(∆BDC)/P(∆ABC) =BC/AC=6/12 =1: 2
BC/AC = BD / AB ⇒ BD =(BC/AC)*ABС =(6/12)*8 = 4 ;
P(∆ ABC) =AB++AC+BC =8+12+6 =26 ;
P(∆BDC) = (1/2)*P(∆ABC) =(1/2)*26 =13 или 3+4+6 =13 .
ответ:
докажем, что треугольники mbd = треугольнику dbn.
воспользуемся следующий признаокм: " если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны".
треугольник авс - равнобедренный.
отсюда следует, что медиана bd - также является биссектрисой угла авс. то есть угол mbd = углу dbn.
по условию bm = bn. bd - общая сторона.
таким образом треугольники mbd = треугольнику dbn по двум сторонам и углу между ними.
если треугольники равны, то и все стороны равны.
отсюда получаем, что dm = dn.
что и требовалось доказать.
объяснение: