Дано: АВСD - ромб, S = 96 см², BD = 4x, AC = 3x, Знайти: Pabcd. Решение: Нехай коефіцієнт пропорційності буде х, тоді діаголналі АС і BD дорівнюють відповідно 3х см і 4х см. Площа ромба - 96 см²
Коефіцієнт пропорційності 4см, а діаголі тоді будуть - 4х=4*4=16 см і 3х=3*4= 12см.
Діагоналі АС і BD перетинаються в точці О. Діагоналі ромба рівні, звідси: АО=ОС = АС/2=12/2 = 6см, ВО = OD = BD/2 =16/2 = 8см. С прямокутного трикутника АОВ: АО = 6 см, ВО = 8см. За т. Піфагора:
Так как точки А, В, С не лежат на одной прямой, существует единственная плоскость а, проходящая через эти точки. То есть, а=(АВС).
Если две точки прямой принадлежат плоскости, то и вся прямая (все точки прямой) принадлежит этой плоскости. Значит, прямая АВ принадлежит а, тогда и М принадлежит а. Аналогично, прямая АС принадлежит а, тогда и К принадлежит а. Из этого следует, что прямая МК также принадлежит плоскости а. Но тогда любая точка этой прямой, в том числе точка Х, принадлежит а, что и требовалось.
Знайти: Pabcd.
Решение:
Нехай коефіцієнт пропорційності буде х, тоді діаголналі АС і BD дорівнюють відповідно 3х см і 4х см. Площа ромба - 96 см²
Коефіцієнт пропорційності 4см, а діаголі тоді будуть - 4х=4*4=16 см і 3х=3*4= 12см.
Діагоналі АС і BD перетинаються в точці О. Діагоналі ромба рівні, звідси: АО=ОС = АС/2=12/2 = 6см, ВО = OD = BD/2 =16/2 = 8см.
С прямокутного трикутника АОВ:
АО = 6 см, ВО = 8см.
За т. Піфагора:
Периметр ромба дорівнює добутку 4 сторін
Відповідь: 40 см.
Если две точки прямой принадлежат плоскости, то и вся прямая (все точки прямой) принадлежит этой плоскости. Значит, прямая АВ принадлежит а, тогда и М принадлежит а. Аналогично, прямая АС принадлежит а, тогда и К принадлежит а. Из этого следует, что прямая МК также принадлежит плоскости а. Но тогда любая точка этой прямой, в том числе точка Х, принадлежит а, что и требовалось.