мне- 4.16-есеп центрлері О және О_1 болатын шеңберлер А және В нүктелерінде қиылысқан.1)үшбұрыш ОАО_1=үшбұрышОВО_1;2)үшбұрыш ОАВ және үшбұрышО_1АВ тең бүйірлі болатынын дәлелдеңдер
Осевое сечение - это равнобедренная трапеция. Проведём в ней диагональ и высоту из одной точки, образовался прямоугольный треугольник. Найдём в нём неизвестный катет: √(13^2-5^2)=12. Этот катет располагается на большем основании. Известно что радиусы оснований конуса, а значит и основания трапеции относятся как 1:2, значит можно составить уравнение, где 12-х - длина меньшего основания, а 2х - на сколько большее основание больше:
(12-х):(12-х+2х)=1:2
(12-х):(12+х)=1:2
12+х=24-2х
3х=12
х=4
Длина меньшего основания: 12-4=8
Большего: 12+4=16
Радиус меньшего основания: 8/2=4
Большего: 16/2=8
Нужно найти боковую сторону L трапеции:
L=√(5^2+x^2)=√(5^2+4^2)=√41
По формуле находим площадь боковой поверхности: pi*L*(R+r)=12√41*pi
Пусть АВ и CD - хорды, перпендикулярные друг к другу, пересекающиеся в точке Р. Точки M и N - середины хорд АВ и CD.
Проведём радиусы ОМ1 и ОN1 через эти точки M и N. Эти радиусы будут перпендикулярны хордам АВ и CD соответственно по свойству хорды и радиуса (ну или доказывается через равнобедренный треугольник с боковыми сторонами, равными радиусу и медианой, проведённой к основанию - она же будет высотой).
Значит <OMP=<ONP=90°, при этом <MPN=90° по условию. Значит в четырёхугольнике OMPN оставшийся 4й угол <MON также равен 90° => OMPN - прямоугольник. В прямоугольнике диагонали равны, значит OP=MN, чтд.
Осевое сечение - это равнобедренная трапеция. Проведём в ней диагональ и высоту из одной точки, образовался прямоугольный треугольник. Найдём в нём неизвестный катет: √(13^2-5^2)=12. Этот катет располагается на большем основании. Известно что радиусы оснований конуса, а значит и основания трапеции относятся как 1:2, значит можно составить уравнение, где 12-х - длина меньшего основания, а 2х - на сколько большее основание больше:
(12-х):(12-х+2х)=1:2
(12-х):(12+х)=1:2
12+х=24-2х
3х=12
х=4
Длина меньшего основания: 12-4=8
Большего: 12+4=16
Радиус меньшего основания: 8/2=4
Большего: 16/2=8
Нужно найти боковую сторону L трапеции:
L=√(5^2+x^2)=√(5^2+4^2)=√41
По формуле находим площадь боковой поверхности: pi*L*(R+r)=12√41*pi
Объяснение:
Пусть АВ и CD - хорды, перпендикулярные друг к другу, пересекающиеся в точке Р. Точки M и N - середины хорд АВ и CD.
Проведём радиусы ОМ1 и ОN1 через эти точки M и N. Эти радиусы будут перпендикулярны хордам АВ и CD соответственно по свойству хорды и радиуса (ну или доказывается через равнобедренный треугольник с боковыми сторонами, равными радиусу и медианой, проведённой к основанию - она же будет высотой).
Значит <OMP=<ONP=90°, при этом <MPN=90° по условию. Значит в четырёхугольнике OMPN оставшийся 4й угол <MON также равен 90° => OMPN - прямоугольник. В прямоугольнике диагонали равны, значит OP=MN, чтд.