Меньшее основание прямоугольной трапеции равно 1 . Найдите её большее основание, если диагональ трапеции образуют с этим основание и боковой стороной углы равные а. С решением
1)четырехугольник - это квадрат. Его сторона равна диаметру вписанной окружности, т. е 2R, где R- радиус вписанной окружности. Тогда площадь квадрата равна
Sкв = 4R^2
2) Разобьем шестиугольник на 6 треугольников отрезками, выходящими из центра к вершинам шестиугольника. Все эти треугольники правильные и равны между собой, т.к. угол при вершине 60 градусов и они равнобедренные, а высотой треугольника является радиус вписанной окружности, т. е. R. Сторону треугольников обозначим через X. Рассмотрим один из треугольников. Высота является в нем и медианой. Тогда, рассмотрев треугольник, образованный отрезком, проведенным из центра, половиной основания и высотой, имеем по теореме Пифагора
R^2 +(X/2)^2 = X^2, откуда X^2= 4R^2/3, X =2R/корень из 3 Площадь треугольника Sтр=X*R/2= 2R*R/2*корень из 3 =R^2/корень из 3 Площадь шестиугольника Sш =6Sтр= 6R^2/корень из 3 = 2* корень из 3* R^2
Отношение площадей Sкв/Sш = 4R2/2* корень из 3* R^2 = 2/корень из 3
Sкв = 4R^2
2) Разобьем шестиугольник на 6 треугольников отрезками, выходящими из центра к вершинам шестиугольника. Все эти треугольники правильные и равны между собой, т.к. угол при вершине 60 градусов и они равнобедренные, а высотой треугольника является радиус вписанной окружности, т. е. R. Сторону треугольников обозначим через X. Рассмотрим один из треугольников.
Высота является в нем и медианой. Тогда, рассмотрев треугольник, образованный отрезком, проведенным из центра, половиной основания и высотой, имеем по теореме Пифагора
R^2 +(X/2)^2 = X^2, откуда
X^2= 4R^2/3, X =2R/корень из 3
Площадь треугольника
Sтр=X*R/2= 2R*R/2*корень из 3 =R^2/корень из 3
Площадь шестиугольника
Sш =6Sтр= 6R^2/корень из 3 = 2* корень из 3* R^2
Отношение площадей
Sкв/Sш = 4R2/2* корень из 3* R^2 = 2/корень из 3
CD - медиана ΔABC, поэтому AD=DB, по условию BD=CD значит, AD=BD=CD
1ыйΔADC - равнобедренный (AD=CD), поэтому ∠ACD=∠CAD=64° и ∠ADC = 180°-2∠CAD = 180°-2·64° = 52°.
∠CDB = 180°-∠ADC = 180°-52° = 128°, как смежный угол.
ΔCDB - равнобедренный (BD=CD), поэтому ∠DCB=∠DBC=(180°-∠CDB)/2 = (180°-128°)/2 = 26°
∠ACB = ∠ACD+∠DCB = 64°+26° = 90°
2ойТочка D равноудалена от вершин ΔABC (AD=DC=DB), поэтому это центр описанной окружности. D∈AB ⇒ AB - диаметр.
Вписанный угол опирающийся на диаметр равен 90°.
∠ACB - вписанный и опирается на AB значит, ∠ACB=90°
ответ: 90°.