меньшая сторона прямоугольника равна 39, диагонали пересекаются под углом 60 градусов. найдите диагонали прямоугольника.2. одна из сторон параллелограмма на 5см больше другой. найдите меньшую сторону, если периметр равен 102см.
Пусть ABCD - равнобедренная трапеция, AB = CD. Средняя линия трапеции = 12, т.е. BC + AD = 2*12 = 24. Угол А = 30 градусам.
Для любого четырехугольника, описанного около окружности справедливо: BC + AD = AB + CD 24 = 2* AB AB = 12.
Опустим высоту BH. Для прямоугольного треугольника известно, что катет, лежащий напротив угла в 30 градусов, равен половине гипотенузы, т.е. BH = AB : 2 = 12 : 2 = 6.
Радиус окружности, вписанной в равнобедренную трапецию, равен половине высоты, значит, r = BH : 2 = 6 : 2 = 3.
В условии ошибка: ВС ║AD, а не АС, так как параллельные прямые не могут проходить через одну точку.
BF = DE по условию,
∠AED = ∠CFB по условию,
∠CBF = ∠ADE как накрест лежащие при пересечении параллельных прямых ВС и AD секущей BD, ⇒
ΔCBF = ΔADE по стороне и двум прилежащим к ней углам.
Значит CF = AE,
BE = BF - EF, DF = DE - EF, а так как BF = DE, то и BE = DF,
∠CFD = ∠AEB как смежные с равными углами (∠AED = ∠CFB по условию),
значит ΔCFD = ΔAEB по двум сторонам и углу между ними.
Тогда ∠АВЕ = ∠CDF, а эти углы - накрест лежащие при пересечении прямых АВ и CD секущей BD, значит АВ║CD.
Для любого четырехугольника, описанного около окружности справедливо:
BC + AD = AB + CD
24 = 2* AB
AB = 12.
Опустим высоту BH. Для прямоугольного треугольника известно, что катет, лежащий напротив угла в 30 градусов, равен половине гипотенузы, т.е.
BH = AB : 2 = 12 : 2 = 6.
Радиус окружности, вписанной в равнобедренную трапецию, равен половине высоты, значит, r = BH : 2 = 6 : 2 = 3.
ответ: 3.