Мы можем видеть, что у углов АОЕ и ВОF имеется общая часть, угол ВОЕ.
Так как из условия "Углы АОЕ и ВОF на рисунке 45 равны", и мы вычтем из углов их общую чать, то получим, что угол ЕОF равен углу ВОА.
А так как ОВ и OE — биссектрисы углов АОС и DOF, то можем сделать вывод, что угол DOЕ равен углу СОВ.
Углы BОD и СОЕ можно представить как сумму общей для углов части, угол DOС с соответствующими углами СОВ и DOЕ. И так как угол DOЕ равен углу СОВ, следует, что углы BОD и СОЕ равны.
ответ:На рисунке параллелограмм.Диагональ делит параллелограмм на два равных треугольника
Противоположные углы параллелограмма равны между собой,а биссектрисы ВМ и КD поделили углы В и D(равные по определению) на две равные части
Угол КDC равен углу МВА
АВ=CD( по условию задачи)
Посмотрим на треугольники АВС и АDC,они равны по третьему признаку равенства треугольников
АВ=СD
BC=AD
AC-общая сторона
И поэтому мы можем утверждать,что угол КСD равен углу ВАМ
Следовательно, треугольники АВМ и КСD равны между собой по второму признаку равенства треугольников,а КС=АМ
Объяснение:Два признака равенства маленьких треугольников я нашла сразу,а чтоб узнать третий-пришлось рассматривать большие треугольники,внимательно читай,смотри на чертёж и разберешься
углы BОD и СОЕ равны
Объяснение:
Мы можем видеть, что у углов АОЕ и ВОF имеется общая часть, угол ВОЕ.
Так как из условия "Углы АОЕ и ВОF на рисунке 45 равны", и мы вычтем из углов их общую чать, то получим, что угол ЕОF равен углу ВОА.
А так как ОВ и OE — биссектрисы углов АОС и DOF, то можем сделать вывод, что угол DOЕ равен углу СОВ.
Углы BОD и СОЕ можно представить как сумму общей для углов части, угол DOС с соответствующими углами СОВ и DOЕ. И так как угол DOЕ равен углу СОВ, следует, что углы BОD и СОЕ равны.
ответ:На рисунке параллелограмм.Диагональ делит параллелограмм на два равных треугольника
Противоположные углы параллелограмма равны между собой,а биссектрисы ВМ и КD поделили углы В и D(равные по определению) на две равные части
Угол КDC равен углу МВА
АВ=CD( по условию задачи)
Посмотрим на треугольники АВС и АDC,они равны по третьему признаку равенства треугольников
АВ=СD
BC=AD
AC-общая сторона
И поэтому мы можем утверждать,что угол КСD равен углу ВАМ
Следовательно, треугольники АВМ и КСD равны между собой по второму признаку равенства треугольников,а КС=АМ
Объяснение:Два признака равенства маленьких треугольников я нашла сразу,а чтоб узнать третий-пришлось рассматривать большие треугольники,внимательно читай,смотри на чертёж и разберешься