Параллельные прямые отсекают в окружности равные дуги, которые соответствуют равным хордам. Это все.
Можно объяснить, почему там равные дуги - равны накрест лежащие внутренние углы при этих параллельных (основаниях) и диагонали трапеции. Значит равны дуги, на которые они опираются.
А вписанный угол опирающийся на дугу измеряется половиной дуги, потому что его можно разделить (или дополнить) диаметром, и каждый из получившихся уголов является углом между диаметром и хордой, и соединяя центр с концом хорды, мы получаем равнобедренный треугольник, у которого 2 угола при основании равны исходному, а центральный угол будет внешним, равным их сумме, то есть центральный угол в 2 раза больше вписанного. Раз это верно для угла между любой хордой и диаметром (имеющими общий конец), то верно вообще для любого угла
ΔАВС - равнобедренный ( АС = ВС ) Поэтому ∠А=∠В; ∠А=40°=∠В. ∠В - основа ΔАВС; ∠В=180°-(∠А+∠В)=180°-80°=100°.
ответ: ∠С = 100°.
Параллельные прямые отсекают в окружности равные дуги, которые соответствуют равным хордам. Это все.
Можно объяснить, почему там равные дуги - равны накрест лежащие внутренние углы при этих параллельных (основаниях) и диагонали трапеции. Значит равны дуги, на которые они опираются.
А вписанный угол опирающийся на дугу измеряется половиной дуги, потому что его можно разделить (или дополнить) диаметром, и каждый из получившихся уголов является углом между диаметром и хордой, и соединяя центр с концом хорды, мы получаем равнобедренный треугольник, у которого 2 угола при основании равны исходному, а центральный угол будет внешним, равным их сумме, то есть центральный угол в 2 раза больше вписанного. Раз это верно для угла между любой хордой и диаметром (имеющими общий конец), то верно вообще для любого угла