Проведём две высоты. Получим одинаковые прямоугольные треугольники внутри трапеции. Нижний катет будет равен 1, т.к. (7-5)/2=1
1 = 2/2, т.е. этот катет равен половине гипотенузы, а значит лежит против угла 30 градусов. В середине трапеции образовался прямоугольник, углы которого равны по 90 градусов. 90 + 30 = 120 градусов углы при верхнем основании.
Сумма углов при боковой стороне должна равняться 180 градусов. 180-120 = 60 градусов углы при нижнем основании.
Точка О2 - центр вписанной окружности в тр-ник АВС. Точка О1 - центр заданной окружности. Около тр-ка АВС опишем окружность. АО2, ВО2 и СО2 - биссектрисы соответствующих углов. Продолжим отрезок СО2 до пересечения его с описанной окружностью в некой точке К. ∠АО2К=∠А/2+∠С/2, т.к. ∠АО2К является внешним к тр-ку АСО2. ∠ВАК=АВК=∠С/2, т.к. оба опираются на те же дуги, на которые опираются равные углы из вершины тр-ка АВС. КА=КВ по этой же причине. Заметим, что в тр-ке АКО2 ∠КАО2=∠АО2К, значит он равнобедренный. КА=КО2=КВ, значит точка К - центр описанной около тр-ка АВО2 окружности. Тр-ник АВС - равнобедренный. В нём СМ - биссектриса и высота. В прямоугольном тр-ке АСМ ∠А+∠С=90°. Заметим, что и в тр-ке АСК ∠САК=90°, значит ∠CВК=90°. СА и CВ - касательные к окружности с центром в точке К. Точки А и В лежат на этой окружности. Но СА и CВ - касательные к заданной окружности, значит точки К и О1 совпадают. О1О2 - радиус заданной окружности, значит центр вписанной в тр-ник АВС окружности лежит на данной окружности. Доказано.
Углы при верхнем основании равны по 120 градусов
Углы при нижнем основании равны по 60 градусов
Объяснение:
Проведём две высоты. Получим одинаковые прямоугольные треугольники внутри трапеции. Нижний катет будет равен 1, т.к. (7-5)/2=1
1 = 2/2, т.е. этот катет равен половине гипотенузы, а значит лежит против угла 30 градусов. В середине трапеции образовался прямоугольник, углы которого равны по 90 градусов. 90 + 30 = 120 градусов углы при верхнем основании.
Сумма углов при боковой стороне должна равняться 180 градусов. 180-120 = 60 градусов углы при нижнем основании.
Около тр-ка АВС опишем окружность.
АО2, ВО2 и СО2 - биссектрисы соответствующих углов.
Продолжим отрезок СО2 до пересечения его с описанной окружностью в некой точке К.
∠АО2К=∠А/2+∠С/2, т.к. ∠АО2К является внешним к тр-ку АСО2.
∠ВАК=АВК=∠С/2, т.к. оба опираются на те же дуги, на которые опираются равные углы из вершины тр-ка АВС. КА=КВ по этой же причине.
Заметим, что в тр-ке АКО2 ∠КАО2=∠АО2К, значит он равнобедренный.
КА=КО2=КВ, значит точка К - центр описанной около тр-ка АВО2 окружности.
Тр-ник АВС - равнобедренный. В нём СМ - биссектриса и высота. В прямоугольном тр-ке АСМ ∠А+∠С=90°. Заметим, что и в тр-ке АСК ∠САК=90°, значит ∠CВК=90°. СА и CВ - касательные к окружности с центром в точке К. Точки А и В лежат на этой окружности. Но СА и CВ - касательные к заданной окружности, значит точки К и О1 совпадают.
О1О2 - радиус заданной окружности, значит центр вписанной в тр-ник АВС окружности лежит на данной окружности.
Доказано.