1) По правилу нахождения разности векторов, начала векторов соединяются и началом вектора разности (c) будет конец вектора (b) (вычитаемое), а концом — конец вектора (a) (уменьшаемое). ОА-ОВ=ВА. По правилу нахождения суммы векторов, начало второго вектора совмещается с концом первого, сумма векторов есть вектор, с началом, совпадающим с началом первого, и концом, совпадающим с концом второго.ВА+АС=ВС. ответ:(OA-OB) +AC = ВС. 2) АВ-АО=ОВ (по правилу). ОВ-OD = DB (по правилу от конца вычитаемого к концу уменьшаемого). Или так: в параллелограмме точка пересечения диагоналей делит их пополам. Векторы ОВ и OD равны, но направлены в противоположные стороны, значит ОD = -OB и ОВ-OD = OB-(-ОВ) = 2ОВ =DB. ответ: (AB-AO)-OD = DB.
Если провести через точку A прямую параллельно BC, то она пересечет BD в точке K таким образом, что AK = AB. Это потому, что ∠AKB = ∠DBC; это - внутренние накрест лежащие углы; а ∠DBC = ∠ABD; так как BD - биссектриса получилось, что треугольник AKB - равнобедренный. Теперь понятно, что для того, чтобы прямая AD пересекла BС в точке C за точкой D, то есть чтобы существовал треугольник ABC, нужно, чтобы точка D лежала ближе к B, чем K. Отсюда ∠ADB > ∠AKB = ∠ABD; и AB > AD; так как напротив большего угла в треугольнике лежит большая сторона.
ОА-ОВ=ВА.
По правилу нахождения суммы векторов, начало второго вектора совмещается с концом первого, сумма векторов есть вектор, с началом, совпадающим с началом первого, и концом, совпадающим с концом второго.ВА+АС=ВС.
ответ:(OA-OB) +AC = ВС.
2) АВ-АО=ОВ (по правилу). ОВ-OD = DB (по правилу от конца вычитаемого к концу уменьшаемого).
Или так: в параллелограмме точка пересечения диагоналей делит их пополам. Векторы ОВ и OD равны, но направлены в противоположные стороны, значит ОD = -OB и ОВ-OD = OB-(-ОВ) = 2ОВ =DB.
ответ: (AB-AO)-OD = DB.
∠AKB = ∠DBC; это - внутренние накрест лежащие углы; а
∠DBC = ∠ABD; так как BD - биссектриса
получилось, что треугольник AKB - равнобедренный.
Теперь понятно, что для того, чтобы прямая AD пересекла BС в точке C за точкой D, то есть чтобы существовал треугольник ABC, нужно, чтобы точка D лежала ближе к B, чем K.
Отсюда ∠ADB > ∠AKB = ∠ABD; и AB > AD; так как напротив большего угла в треугольнике лежит большая сторона.