1) Докажем по определению: "Параллелограммом называется четырехугольник у которого противоположные стороны попарно параллельны".
по аксиоме любые три точки всегда лежат в одной плоскости. Значит четвертая точка не лежит в данной плоскости. Если все 4 точки соединить между собой, то получится треугольная пирамида (тетраэдр) рассмотрим ΔАВС: Если Е и F - середины сторон АВ и ВС, то EF - средняя линия треугольника (по определению), следовательно EF || AC. аналогично для других треугольников: KM - средняя линия треугольника ADC значит КM || AC Если EF || AC и КM || AC, то EF || KM (закон транзитивности)
EK - средняя линия треугольника ADB, значит EK || BD MF- средняя линия треугольника CDB, значит MF || BD Если EK || BD и MF || BD, то EK || MF
Итак, EF || KM и EK || MF, следовательно EFKM-параллелограмм (по определению) - ч.т.д.
2) средняя линия треугольника равна половине основания KE=MF=BD/2=8/2=4 см KM=EF=AC/2=6/2=3 см Периметр (Р) - сумма длин всех сторон KE+MF+KM+EF=4+4+3+3=14 см Отв: 14 см
Если принять AC = BC = 1; то AB = √2; Если симметрично отобразить треугольник вместе с полуокружностью относительно AC, то получится равнобедренный прямоугольный треугольник ABB1 с гипотенузой BB1 = 2 и вписанной в него окружностью. Отсюда диаметр этой окружности PC = AB + AB1 - BB1 = 2√2 - 2; Треугольник PCB - прямоугольный с катетами BC = 1; PC = 2√2 - 2; Если M - точка пересечения PB и полуокружности, то ∠CMP - прямой, поскольку опирается на диаметр, то есть CM - высота в прямоугольном треугольнике PCB; она делит гипотенузу PB в отношении, равном квадрату отношения катетов, то есть PM/MB = (PC/BC)^2 = 4(√2 - 1)^2 = 4(3 - 2√2);
"Параллелограммом называется четырехугольник у которого противоположные стороны попарно параллельны".
по аксиоме любые три точки всегда лежат в одной плоскости.
Значит четвертая точка не лежит в данной плоскости. Если все 4 точки соединить между собой, то получится треугольная пирамида (тетраэдр)
рассмотрим ΔАВС:
Если Е и F - середины сторон АВ и ВС, то EF - средняя линия треугольника (по определению), следовательно EF || AC.
аналогично для других треугольников:
KM - средняя линия треугольника ADC значит КM || AC
Если EF || AC и КM || AC, то EF || KM (закон транзитивности)
EK - средняя линия треугольника ADB, значит EK || BD
MF- средняя линия треугольника CDB, значит MF || BD
Если EK || BD и MF || BD, то EK || MF
Итак, EF || KM и EK || MF, следовательно EFKM-параллелограмм (по определению) - ч.т.д.
2) средняя линия треугольника равна половине основания
KE=MF=BD/2=8/2=4 см
KM=EF=AC/2=6/2=3 см
Периметр (Р) - сумма длин всех сторон
KE+MF+KM+EF=4+4+3+3=14 см
Отв: 14 см
Если симметрично отобразить треугольник вместе с полуокружностью относительно AC, то получится равнобедренный прямоугольный треугольник ABB1 с гипотенузой BB1 = 2 и вписанной в него окружностью. Отсюда диаметр этой окружности PC = AB + AB1 - BB1 = 2√2 - 2;
Треугольник PCB - прямоугольный с катетами BC = 1; PC = 2√2 - 2;
Если M - точка пересечения PB и полуокружности, то ∠CMP - прямой, поскольку опирается на диаметр, то есть CM - высота в прямоугольном треугольнике PCB; она делит гипотенузу PB в отношении, равном квадрату отношения катетов, то есть
PM/MB = (PC/BC)^2 = 4(√2 - 1)^2 = 4(3 - 2√2);