М нүктесі CD түзуінің С және D нүктелері арасында жатады.Егер: 1)СМ=2.5 см,МD=3.5 см;2)СМ=3.1 дм,MD=4.6 дм;3)СМ=12.3 м, MD=5.8 м болма,онда CD кесіндісінің ұзындығын табыңдар.Өтініш көмек керек
По неравенству треугольника сумма двух сторон должна обязательно быть больше третьей. Пусть третья сторона равна х>0. Тогда получаем следующие неравенства
х < 3,14 + 0,6
3,14 < x + 0,6
0,6 < x + 3,14
Так как x > 0, то третье неравенство выполнено для любого положительного х.
Из первого неравенства получаем, что х < 3,81, а из второго неравенства получаем, что 2,54 < х. Значит
2,54 < х < 3,81.
Так как в условии сказано, что длина третьей стороны является целым числом, то задачу удовлетворяет только х = 3.
Объяснение:
Дано:
АH=12 см, АВ=13 см, D = 26 = 2r
BC = ?
описанная окружность с центром на серединных перпендикуляров .
для вписанного в окружность Δ R= (a*b*c)/ (2S)
АК = КС = 1/2 *АС; АМ = МВ = 1/2 *АВ
из ΔАОМ ; ОМ = √(АО^2 - AM^2) = √(13^2 - (13/2)^2)= √[(13^2* (1- 1/4)]
OM = 6.5√3 то есть АО- гипотенуза, АМ - 1/2*АО , ⇒ ∠АОМ = 30° .
ΔАОВ - равнобедренный АО = ОВ, ∠ОАВ = ∠ОВА = 60 ⇒ ΔАОВ-равносторонний, ⇒ ΔАВС равнобедренный, СМ =медиана, биссектриса, высота. (см рис.2) ⇒ AC = BC
( из ΔBHС ) BH = √(AB^2-BH^2) = √(13^2 - 12^) = √(13+12)(13-12)=√25 = 5
ΔBHA и Δ СКО подобны как Δ с взаимно ⊥ сторонами, а именно
R= (a*b*c)/ (4S) = AC^2* AB / (4SΔавс)
SΔавс 4 1/2*BH*AC
По неравенству треугольника сумма двух сторон должна обязательно быть больше третьей. Пусть третья сторона равна х>0. Тогда получаем следующие неравенства
х < 3,14 + 0,6
3,14 < x + 0,6
0,6 < x + 3,14
Так как x > 0, то третье неравенство выполнено для любого положительного х.
Из первого неравенства получаем, что х < 3,81, а из второго неравенства получаем, что 2,54 < х. Значит
2,54 < х < 3,81.
Так как в условии сказано, что длина третьей стороны является целым числом, то задачу удовлетворяет только х = 3.