формулировка этой гипотезы выглядит так: «на любом невырожденном проективном комплексном многообразии любой класс ходжа представляет собой рациональную линейную комбинацию классов циклов». нужно доказать или опровергнуть это утверждение. о чем речь? решения уравнения у = зх + 1 можно представить на координатной сетке как прямую. корни квадратного уравнения дадут нам параболу. усложнять можно бесконечно — например, поверхности с таким уравнением
навье стокса-описывают, как потоки жидкости или газа ведут себя при определенных условиях. их применяют в метеорологии, в конструировании самолетов, при расчете аэродинамики автомобилей. однако в аналитическом виде решения этих уравнений найдены лишь в некоторых частных случаях. часть уравнений навье-стокса для несжимаемой жидкости « тысячелетия» не требует найти явные решения уравнения. вопрос такой: если известно состояние жидкости в определенный момент времени и характеристики ее движения — существует ли решение, которое будет верно для всего будущего времени? чтобы получить премию, достаточно доказать или опровергнуть существование и гладкость решения в любом из двух вариантов, предложенных институтом клэя.
Объяснение: Через две пересекающиеся прямые AC и BD проведём плоскость АВСD. Четырёхугольник ABCD лежит в одной плоскости, так как две пересекающиеся прямые АС и BD определяют единственную плоскость. Если две параллельные плоскости пересекаются третьей, то прямые пересечения параллельны⇒ АВ ║CD. Тогда треугольникм АКВ и CKD подобны по двум углам (имеем даже три равных угла - <CKD=<AKB как вертикальные, а <BAC(BAK)=<ACD(KCD) и <ABD(ABK)=<BDC(KDC) как накрест лежащие при параллельных AB и CD и секущих АС и BD соответственно). Коэффициент подобия равен k=AB/CD=1/2. Из подобия имеем: KB/KD=1/2 => KD=KB*2 = 10см.
формулировка этой гипотезы выглядит так: «на любом невырожденном проективном комплексном многообразии любой класс ходжа представляет собой рациональную линейную комбинацию классов циклов». нужно доказать или опровергнуть это утверждение. о чем речь? решения уравнения у = зх + 1 можно представить на координатной сетке как прямую. корни квадратного уравнения дадут нам параболу. усложнять можно бесконечно — например, поверхности с таким уравнением
навье стокса-описывают, как потоки жидкости или газа ведут себя при определенных условиях. их применяют в метеорологии, в конструировании самолетов, при расчете аэродинамики автомобилей. однако в аналитическом виде решения этих уравнений найдены лишь в некоторых частных случаях. часть уравнений навье-стокса для несжимаемой жидкости « тысячелетия» не требует найти явные решения уравнения. вопрос такой: если известно состояние жидкости в определенный момент времени и характеристики ее движения — существует ли решение, которое будет верно для всего будущего времени? чтобы получить премию, достаточно доказать или опровергнуть существование и гладкость решения в любом из двух вариантов, предложенных институтом клэя.
Объяснение: Через две пересекающиеся прямые AC и BD проведём плоскость АВСD. Четырёхугольник ABCD лежит в одной плоскости, так как две пересекающиеся прямые АС и BD определяют единственную плоскость. Если две параллельные плоскости пересекаются третьей, то прямые пересечения параллельны⇒ АВ ║CD. Тогда треугольникм АКВ и CKD подобны по двум углам (имеем даже три равных угла - <CKD=<AKB как вертикальные, а <BAC(BAK)=<ACD(KCD) и <ABD(ABK)=<BDC(KDC) как накрест лежащие при параллельных AB и CD и секущих АС и BD соответственно). Коэффициент подобия равен k=AB/CD=1/2. Из подобия имеем: KB/KD=1/2 => KD=KB*2 = 10см.
ответ: KD=10см.