лыжный трамплин сункар алматы с высотой 40 м является одним из лучших 5 лучших в мире его вершины из точки к на поверхности земли под углом 30 градусов найдите длину трамплина от точки k до его вершины
Угол АОС =150°. Смежные с ним углы АОД и СОЕ равны 180° - 150° = 30°. Медианы треугольника точкой пересечения О делятся в отношении 2:1, начиная от вершины, поэтому АО = 2см, а ОЕ = 1см. Поэтому же ОД = х , а СО = 2х Медианы делят треугольник на 6 равновеликих (равных по площади) треугольников, поэтому площадь треугольника АОD S(AOD) = 1/6 S(ABC) = 12 : 6 = 2(см²) Площадь треугольника AOD можно вычислить и иначе: S(AOD) = 0.5 · AO · OD · sin 30° = 0.5 · 2 · x · 0.5 = 0.5x 0.5x = 2 → x = 4(см) - это OD, а ОС = 2х = 8(см) СD = OD + OC = 4 + 8 = 12(cм) ответ: 12см
Выделим полные квадраты
x² + y² - 2x - 2y - 3 = 0
x² - 2x + y² - 2y - 3 = 0
x² - 2x + 1 + y² - 2y + 1 - 3 = 1 + 1
(x - 1)² + (y - 1)² = 5
Центр окружности О(1; 1), радиус √5
--- 2 ---
Проверим, что окружность действительно проходит через точку Т(2; 3)
(2 - 1)² + (3 - 1)² = 5
1² + 2² = 5
1 + 4 = 5
Да, всё верно
--- 3 ---
Радиус. Получим уравнение прямой, проходящей через 2 точки О(1; 1) Т(2; 3)
(x - 1)/(2 - 1) = (y - 1)/(3 - 1)
x - 1 = (y - 1)/2
2x - 2 = y - 1
2x - 1 = y
y = 2x - 1
--- 4 ---
Уравнение перпендикуляра к радиусу в общем виде
y = -1/2*x + b
--- 5 ---
Определим свободный член из условия прохождения перпендикуляра через точку Т(2; 3)
3 = -1/2*2 + b
3 = - 1 + b
b = 4
Окончательно уравнение касательной
y = -1/2*x + 4
Медианы треугольника точкой пересечения О делятся в отношении 2:1, начиная от вершины, поэтому АО = 2см, а ОЕ = 1см.
Поэтому же ОД = х , а СО = 2х
Медианы делят треугольник на 6 равновеликих (равных по площади) треугольников, поэтому площадь треугольника АОD
S(AOD) = 1/6 S(ABC) = 12 : 6 = 2(см²)
Площадь треугольника AOD можно вычислить и иначе:
S(AOD) = 0.5 · AO · OD · sin 30° = 0.5 · 2 · x · 0.5 = 0.5x
0.5x = 2 → x = 4(см) - это OD, а ОС = 2х = 8(см)
СD = OD + OC = 4 + 8 = 12(cм)
ответ: 12см