1)проведи диаметр АО, соедини его конец с D. в образовавшемся прямоугольном (опирается на диаметр) треугольнике стороны 6, 8 и 10 (египетский)
2)2 вписанных угла, опирающихся на 1 дугу равны, найди 2 подобных по двум углам прямоугольных треугольника. Из подобия легко ищется боковая сторона
3)нижние отрезки диагоналей (AO и DO, если точка пересечений диагоналей О, равны 4 корня из 2 по "теореме Пифагора" или по легкой формуле для равнобедренного прямоугольного)
4) по теореме Пифагора ищем верхние отрезки диагоналей
5)по теореме Пифагора находим ВD
6)высоту находим, проведя ее из В по теореме Пифагора (нижний отрезок на АD равен 1, т.к. трапеция равнобедренная) По высоте находим площадь
Первая фигура - прямоугольник. Как известно, противолежащие стороны прямоугольника равны.
Из рисунка видно, что стороны прямоугольника являются катетами треугольников ABD и BCD. Значит, эти треугольники равны по двум катетам.
Вторая фигура - равнобедренный треугольник, так как углы при основании равны (по условию). Углы PKS и RKS - смежные(их сумма равна 180°) и тоже равны (по условию). Тогда угол PKS=RKS=90°, а значит, отрезок SK будет являться высотой треугольника PSR.
В равнобедренном треугольнике высота является и медианой (по свойству равнобедренного треугольника). Значит, PK=KR. Тогда треугольники PKS и RKS - равные (по катету и острому углу).
5 корней из 2-бок,6-основание,7 -площадь
Объяснение:
основные моменты:
0)трапеция вписанная, а значит равнобедренная
1)проведи диаметр АО, соедини его конец с D. в образовавшемся прямоугольном (опирается на диаметр) треугольнике стороны 6, 8 и 10 (египетский)
2)2 вписанных угла, опирающихся на 1 дугу равны, найди 2 подобных по двум углам прямоугольных треугольника. Из подобия легко ищется боковая сторона
3)нижние отрезки диагоналей (AO и DO, если точка пересечений диагоналей О, равны 4 корня из 2 по "теореме Пифагора" или по легкой формуле для равнобедренного прямоугольного)
4) по теореме Пифагора ищем верхние отрезки диагоналей
5)по теореме Пифагора находим ВD
6)высоту находим, проведя ее из В по теореме Пифагора (нижний отрезок на АD равен 1, т.к. трапеция равнобедренная) По высоте находим площадь
Задание 1.
а) По двум катетам
б) По катету и гипотенузе
в) По катету и острому углу
г) По гипотенузе и острому углу
Задание 2.
Первая фигура - прямоугольник. Как известно, противолежащие стороны прямоугольника равны.
Из рисунка видно, что стороны прямоугольника являются катетами треугольников ABD и BCD. Значит, эти треугольники равны по двум катетам.
Вторая фигура - равнобедренный треугольник, так как углы при основании равны (по условию). Углы PKS и RKS - смежные(их сумма равна 180°) и тоже равны (по условию). Тогда угол PKS=RKS=90°, а значит, отрезок SK будет являться высотой треугольника PSR.
В равнобедренном треугольнике высота является и медианой (по свойству равнобедренного треугольника). Значит, PK=KR. Тогда треугольники PKS и RKS - равные (по катету и острому углу).