Расстояние от точки до прямой равно длине перпендикуляра, проведенного из этой точки к данной прямой.
Проведем МН⊥АD.
ВН - проекция наклонной МН и по т. о 3-х перпендикулярах
∠ ВНА=∠BHD=90°
∆ АНВ- прямоугольный с гипотенузой АВ=5 и острым углом А=45°. Сумма острых углов прямоугольного треугольника равна 90°, поэтому угол АВН=45°,⇒
∆ АВН- равнобедренный и ВН=АВ•sin 45º=2,5√2
Угол МВН прямой по условию ( отрезок, перпендикулярный плоскости, перпендикулярен любой прямой, проходящей через его основание).
Из прямоугольного ∆ MВН по т.Пифагора
МН=√(ВН² +ВМ² )=√(12,5+100)=7,5√2 см - это искомое расстояние.
Условие задачи неполное. Должно быть так:
Найдите объем прямой призмы АВСАВ₁С₁, если
∠АВ₁С = 60°, АВ₁ = 3, СВ₁ = 2 и двугранный угол с ребром ВВ₁ прямой.
Призма прямая, значит боковые грани - прямоугольники. Тогда
АВ⊥ВВ₁, СВ⊥ВВ₁, значит ∠АВС = 90° - линейный угол двугранного угла с ребром ВВ₁.
Из треугольника АВ₁С по теореме косинусов найдем АС:
АС² = AB₁² + CB₁² - 2·AB₁·CB₁·cos∠AB₁C
AC² = 9 + 4 - 2 · 3 · 2 · 1/2 = 13 - 6 = 7
AC = √7
Пусть АВ = а, ВС = b, ВВ₁ = с.
По теореме Пифагора составим три уравнения:
ΔАВС: a² + b² = 7
ΔABB₁: a² + c² = 9
ΔCBB₁: b² + c² = 4
Получили систему из трех уравнений с тремя переменными. Сложим все три уравнения:
2(a² + b² + c²) = 20
a² + b² + c² = 10
Теперь из этого уравнения вычтем каждое. Получим:
с² = 3
b² = 1
a² = 6
Откуда:
с = √3, b = 1, a = √6.
V = Sabc · BB₁ = 1/2 · ab · c = 1/2 · √6 · 1 · √3 = 3√2/2
Расстояние от точки до прямой равно длине перпендикуляра, проведенного из этой точки к данной прямой.
Проведем МН⊥АD.
ВН - проекция наклонной МН и по т. о 3-х перпендикулярах
∠ ВНА=∠BHD=90°
∆ АНВ- прямоугольный с гипотенузой АВ=5 и острым углом А=45°. Сумма острых углов прямоугольного треугольника равна 90°, поэтому угол АВН=45°,⇒
∆ АВН- равнобедренный и ВН=АВ•sin 45º=2,5√2
Угол МВН прямой по условию ( отрезок, перпендикулярный плоскости, перпендикулярен любой прямой, проходящей через его основание).
Из прямоугольного ∆ MВН по т.Пифагора
МН=√(ВН² +ВМ² )=√(12,5+100)=7,5√2 см - это искомое расстояние.
Условие задачи неполное. Должно быть так:
Найдите объем прямой призмы АВСАВ₁С₁, если
∠АВ₁С = 60°, АВ₁ = 3, СВ₁ = 2 и двугранный угол с ребром ВВ₁ прямой.
Призма прямая, значит боковые грани - прямоугольники. Тогда
АВ⊥ВВ₁, СВ⊥ВВ₁, значит ∠АВС = 90° - линейный угол двугранного угла с ребром ВВ₁.
Из треугольника АВ₁С по теореме косинусов найдем АС:
АС² = AB₁² + CB₁² - 2·AB₁·CB₁·cos∠AB₁C
AC² = 9 + 4 - 2 · 3 · 2 · 1/2 = 13 - 6 = 7
AC = √7
Пусть АВ = а, ВС = b, ВВ₁ = с.
По теореме Пифагора составим три уравнения:
ΔАВС: a² + b² = 7
ΔABB₁: a² + c² = 9
ΔCBB₁: b² + c² = 4
Получили систему из трех уравнений с тремя переменными. Сложим все три уравнения:
2(a² + b² + c²) = 20
a² + b² + c² = 10
Теперь из этого уравнения вычтем каждое. Получим:
с² = 3
b² = 1
a² = 6
Откуда:
с = √3, b = 1, a = √6.
V = Sabc · BB₁ = 1/2 · ab · c = 1/2 · √6 · 1 · √3 = 3√2/2