Будем считать, что условие я, всё-таки, понял правильно.... Смотрим рисунок: В прямоугольном Δ-ке середина гипотенузы (на рисунке - О) есть центр описанной окружности, значит ОА=ОС=ОВ Если прямой угол делится в отношении 1:2, то ∠АСО=30°, ∠ОСВ=60° Т.к. ОС=ОВ, то ΔСОВ - равнобедренный, ∠ОСВ=∠ОВС=60°, но тогда также ∠СОВ=60°, таким образом, ΔСОВ не только равнобедренный, но и раносторонний: ОС=ОВ=ВС=10 см ∠САВ=30°, значит гипотенуза АВ=2ВС=20 см Меньшая средняя линия равна половине меньшей стороны: ОМ=ВС/2=5 см
∠CDE составляет одну часть, ∠ADE - 8 таких частей, всего 9 частей.
∠CDE = 90° : 9 = 10°
Сумма острых углов прямоугольного треугольника 90°, тогда из ΔCDE:
∠DCE = 90° - ∠CDE = 90° - 10° = 80°
Диагонали прямоугольника равны и точкой пересечения делятся пополам, тогда ΔCOD равнобедренный (CO = OD), значит углы при его основании равны:
∠OCD = ∠ODC = 80°.
В ΔOCD находим третий угол:
∠COD = 180° - (∠OCD + ∠ODC) = 180° - 160° = 20° - угол между диагоналями.
Объяснение:
Подпишись на меня в ютубе мой канал. LIXORADKA 43. Буду тебя там ждать)
Смотрим рисунок:
В прямоугольном Δ-ке середина гипотенузы (на рисунке - О) есть центр описанной окружности, значит ОА=ОС=ОВ
Если прямой угол делится в отношении 1:2, то ∠АСО=30°, ∠ОСВ=60°
Т.к. ОС=ОВ, то ΔСОВ - равнобедренный, ∠ОСВ=∠ОВС=60°, но тогда также ∠СОВ=60°, таким образом, ΔСОВ не только равнобедренный, но и раносторонний:
ОС=ОВ=ВС=10 см
∠САВ=30°, значит гипотенуза АВ=2ВС=20 см
Меньшая средняя линия равна половине меньшей стороны:
ОМ=ВС/2=5 см