1. правильный шестиугольник, состоит из шести равносторонних треугольников.
найдем сторону шестиугольника ab=r=48/6=8м.
рассмотрим δсdo в нем cd=do=0,5a (где а - сторона квадрата) ⇒ a=2cd
по теореме пифагора найдем сd
r²=cd²+do²=2cd² ⇒ r=cd√2⇒ м
2.центр
вписанной в треугольник окружности - точка пересечения биссектрис его углов.
центр описанной окружности - точка пересечения срединных перпендикуляров.
в правильном треугольнике биссектрисы, медианы и срединные перпендикуляры . центры описанной и вписанной окружности также и
лежат в точке пересечения медиан.
r: r=2: 1, считая от вершины (свойство медиан).
радиус r вписанной в правильный треугольник окружности ( значит, и круга) равен 1/3 его высоты.
радиус rописанной вокруг правильного треугольника окружности равен 2/3 его высоты.
⇒r=2r
πr²=16π⇒r=4
r=2•4=8
πr²=π•8²=64π см²
3.длина окрудности равна l = 2πr => r =l/2π= 36π/2π = 18
а) длина дуги на которую опирается вписанный угол 35⁰ равна
l = а r , где а - центральный, опирающегося
на эту же дугу (в радианах),
т.е а = 2*35⁰ = 70⁰
10= π/180 радиан => а = 70*π/180 = 7π/18
l = а r = 7π/18 *18 =7π
б) площадь сектора,ограниченного этой дугой равна s = 0,5а r²
Трапеция ABCD, FE- средняя линия, Углы BAD и ABC- прямые.Угол ADC- острый. Угол BCD в два раза больше угла ADC.Точка F средней линии лежит на AB. Из вершины С опустим перпендикуляр на основание AD. Точку пересечения с основанием AD обозначим буквой K. Рассмотрим треугольник CKD. Угол CKD- прямой.Угол KCD = угол BCD-угол BCK= угол BCD-90. Угол BCD=2 углам CDK, из этого угол KCD= 2 угла СDK-90, Угол KCD+ угол CDK=90, 2угла CDK-90+угол CDK=90, 3 угла CDK=180, Угол CDK=60, угол KCD=30. Катет KD лежит против угла в 30 и он равен половине гипотенузы. CD=24, KD=12. Обозначим точку пересечения перпендиккляра с средней линией трапеции точкой N. NF- средняя линия треугольника CKD. NF=1/2KD=12:2=6. EN=BC=9-6=3, AD=BC+KD=3+12=15. ответ: AD=12, BC=3.
1. правильный шестиугольник, состоит из шести равносторонних треугольников.
найдем сторону шестиугольника ab=r=48/6=8м.
рассмотрим δсdo в нем cd=do=0,5a (где а - сторона квадрата) ⇒ a=2cd
по теореме пифагора найдем сd
r²=cd²+do²=2cd² ⇒ r=cd√2⇒ м
2.центр
вписанной в треугольник окружности - точка пересечения биссектрис его углов.
центр описанной окружности - точка пересечения срединных перпендикуляров.
в правильном треугольнике биссектрисы, медианы и срединные перпендикуляры . центры описанной и вписанной окружности также и
лежат в точке пересечения медиан.
r: r=2: 1, считая от вершины (свойство медиан).
радиус r вписанной в правильный треугольник окружности ( значит, и круга) равен 1/3 его высоты.
радиус rописанной вокруг правильного треугольника окружности равен 2/3 его высоты.
⇒r=2r
πr²=16π⇒r=4
r=2•4=8
πr²=π•8²=64π см²
3.длина окрудности равна l = 2πr => r =l/2π= 36π/2π = 18
а) длина дуги на которую опирается вписанный угол 35⁰ равна
l = а r , где а - центральный, опирающегося
на эту же дугу (в радианах),
т.е а = 2*35⁰ = 70⁰
10= π/180 радиан => а = 70*π/180 = 7π/18
l = а r = 7π/18 *18 =7π
б) площадь сектора,ограниченного этой дугой равна s = 0,5а r²
s = 0,5 *
7π/18 *18² = 0,5 * 7π *18 = 63π
ответ: а)7π; б)63π
Угол BCD=2 углам CDK, из этого угол KCD= 2 угла СDK-90,
Угол KCD+ угол CDK=90, 2угла CDK-90+угол CDK=90, 3 угла CDK=180,
Угол CDK=60, угол KCD=30. Катет KD лежит против угла в 30 и он равен половине гипотенузы. CD=24, KD=12. Обозначим точку пересечения перпендиккляра с средней линией трапеции точкой N. NF- средняя линия треугольника CKD. NF=1/2KD=12:2=6. EN=BC=9-6=3,
AD=BC+KD=3+12=15.
ответ: AD=12, BC=3.