1. Основания трапеции параллельны: AD||BC, тогда можно найти угол ABC, рассматривая его как односторонний с углом BAD в параллельных прямых, пересечённых секущей: ABC = 180° - угол BAD = 130°;
2. Угол ABD = 90°, угол ABC = угол ABD + угол DBC, тогда угол DBC = угол ABC - угол ABD = 130-90 = 40°;
3. Рассмотрим треугольник BCD, он равнобедренный, так как по условию BC = CD, следовательно углы при основании равны: DBC = CDB = 40°;
1. Исходя из свойств трапеции: BC||AM, значит BC||KP, BK и CP - перпендикуляры, тогда BC = KP = 5см;
2. AM = AK + KP + PM; трапеция ABCM - равнобедренная (AB = CM, угол А = углу М), значит AK = PM = x:
AM = 2x + KP 7 = 2x + 5 x=1см;
3. Найдём тупые углы трапеции: ее основания параллельны, а следовательно угол BCM = 180°- угол PMC = 120° (как односторонние углы в параллельных прямых):
4. Угол BCP = 90° (так как угол KPC = 90° = BKP), значит так как угол BCM = BCP + PCM => PCM = BCM - BCP = 120°-90°=30°;
5. Рассмотрим прямоугольный треугольник CPM, по теореме о 30° катет, противолежащий углу в 30° равен половине гипотенузы следует: CM = 2PM = 2см;
М. южн. угол, зауголок, закоелок, тупик; вершина или конец глухого захода, залива, заводи, мыса и пр. Загнали волка в кут — там ему и капут! || Угол крестьянской избы; четыре угла избы отвечают четырем покоям: передней, гостиной, спальне и стряпной;кут, куть, кутник, называется придверный угол и прилавок, коник (твер. пск. ряз. тул. пенз. влад. яросл. костр. ниж. вят.);местами же бабий угол, середа, шелнуша, стряпная за перегородкою, за занавескою (вор. кур. калужск. вологодск. перм. арх. сиб. сар.) в новг. этот же угол, если полати там, а не при дверях; наконец кут красный угол (новг. пск. смол. кур.). Из кута по лавке, шелудяк наголо! бранное на свадебных гостей, дрянные гости. Тащи стол на кут! от печи в красный угол. Садись на кут, да и все тут
1. Основания трапеции параллельны: AD||BC, тогда можно найти угол ABC, рассматривая его как односторонний с углом BAD в параллельных прямых, пересечённых секущей: ABC = 180° - угол BAD = 130°;
2. Угол ABD = 90°, угол ABC = угол ABD + угол DBC, тогда угол DBC = угол ABC - угол ABD = 130-90 = 40°;
3. Рассмотрим треугольник BCD, он равнобедренный, так как по условию BC = CD, следовательно углы при основании равны: DBC = CDB = 40°;
4. Сумма углов треугольника - 180°, следовательно угол C = 180 - (DBC + CDB) = 180-80 = 100°;
ответ: угол С = 100°
•Задание 5
1. Исходя из свойств трапеции: BC||AM, значит BC||KP, BK и CP - перпендикуляры, тогда BC = KP = 5см;
2. AM = AK + KP + PM; трапеция ABCM - равнобедренная (AB = CM, угол А = углу М), значит AK = PM = x:
AM = 2x + KP
7 = 2x + 5
x=1см;
3. Найдём тупые углы трапеции: ее основания параллельны, а следовательно угол BCM = 180°- угол PMC = 120° (как односторонние углы в параллельных прямых):
4. Угол BCP = 90° (так как угол KPC = 90° = BKP), значит так как угол BCM = BCP + PCM => PCM = BCM - BCP = 120°-90°=30°;
5. Рассмотрим прямоугольный треугольник CPM, по теореме о 30° катет, противолежащий углу в 30° равен половине гипотенузы следует: CM = 2PM = 2см;
ответ: CM = 2 см.