Пусть а,b- катеты, c - гипотенуза, h - высота, проведенная к гипотенузе. дано а=10, h=6 найти b
второй катет будем искать через площадь треугольника. Площадь треугольника можно найти по формуле через высоту S=1/2 * c * h С другой стороны, площадь прямоугольного треугольника можно выразить через катеты S=1/2 * a * b
значит 1/2 * c * h = 1/2 * a * b с * h = a * b √(a² + b²) * h = a * b возводим в квадрат обе части (a² + b²) * h² = a² * b² a² * h² = b² ( a² - h²) b = √((a² * h²) / (a² - h²) )= a * h / √(a² - h²) = 10*6/√64 = 7,5
дано а=10, h=6
найти b
второй катет будем искать через площадь треугольника.
Площадь треугольника можно найти по формуле через высоту S=1/2 * c * h
С другой стороны, площадь прямоугольного треугольника можно выразить через катеты S=1/2 * a * b
значит 1/2 * c * h = 1/2 * a * b
с * h = a * b
√(a² + b²) * h = a * b возводим в квадрат обе части
(a² + b²) * h² = a² * b²
a² * h² = b² ( a² - h²)
b = √((a² * h²) / (a² - h²) )= a * h / √(a² - h²) = 10*6/√64 = 7,5
Площадь прямоугольного треугольника равна 84 дм², а радиус окружности, вписанной в этот треугольник, 3см. Найти катеты треугольника.
Пусть дан треугольник АВС, угол С=90º
Точки касания вписанной окружности на АС- точка К, на ВС - точка Н, на гипотенузе АВ- точка М.
Пусть АК=х, ВН=у.
Тогда по свойству отрезков касательных из одной точки АМ=х, ВМ=у
АВ=х+у
АС=х+3, ВС=у+3
Формула радиуса вписанной окружности
r=S:p, где r -радиус, S - площадь треугольника. р- его полупериметр
р=х+у+3
3=84:(х+у+3)
х+у+3=28⇒
х+у=25
у=25-х
АВ=х+у=25 дм
АС=х+3
ВС=25-х+3=28-х
По т.Пифагора
(х+3)²+(28-х)²=625
Произведя вычисления и приведя подобные члены, получим квадратное уравнение
х²-25х+84=0
D=25²-4·84=289
Решив уравнение, найдем два корня: 21 и 4
АС=21+3=24 дм
ВС=28-21=7 дм
Кстати, длины сторон этого треугольника из Пифагоровых троек, где стороны относятся как 7:24:25