В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
1252
1252
28.02.2022 23:28 •  Геометрия

Кут при основі рівнобедреного трикутника у два рази більший,
ніж кут при вершині. Знайти кути
Цього трикутника.​

Показать ответ
Ответ:
superbomber
superbomber
05.05.2021 16:47

Окружность, центр которой расположен в первой координатной четверти, касается оси Ox в точке M, пересекает две гиперболы y = \frac{k1}{x} и y = \frac{k2}{x} (k1, k2 > 0) в точках A и B таких, что прямая AB проходит через начало координат O. Известно, что k1 * k2 = 144. Найдите наименьшую возможную длину отрезка OM.В ответ запишите квадрат длины ОМ.

Объяснение:

Прямая АВ , проходящая через начало координат имеет вид у=кх

Найдем точки пересечения этой прямой и гипербол:

y = \frac{k1}{x} и у=кх →   \frac{k1}{x} = кх , х²= \frac{k1}{k}  ;  x = \sqrt{\frac{k1}{k} }  (   т.к. точка пересечения в 1 четверти , то х>0 ). Тогда у= к* \sqrt{\frac{k1}{k} }  .

y = \frac{k2}{x} и у=кх →    \frac{k2}{x} = кх , х²= \frac{k2}{k}  ;  x = \sqrt{\frac{k2}{k} }  (   т.к. точка пересечения в 1 четверти , то х>0 ). Тогда у= к* \sqrt{\frac{k2}{k} }  .

По свойство касательной и секущей проведенных из одной точки ОМ²=ОА*ОВ.   Найдем ОА и ОВ по формулам расстояния между точками : ОА= \sqrt{\frac{k1}{k} +k^{2}*\frac{k1}{k} } = \sqrt{\frac{k1}{k} +k*k1} ,

ОB= \sqrt{\frac{k2}{k} +k^{2}*\frac{k2}{k} } = \sqrt{\frac{k2}{k} +k*k2}  .

Тогда ОМ²= \sqrt{\frac{k1}{k} +k*k1} *  \sqrt{\frac{k2}{k} +k*k2}   =  \sqrt{k1*(\frac{1}{k}+k) } *\sqrt{k2*(\frac{1}{k}+k) } =( \frac{1}{k}+k) *\sqrt{k1*k2}  .  Т.к   \frac{1}{k}+k ≥2  ,по следствию из неравенства о среднем арифметическом и среднем геометрическом , то принимает наименьшее значение равное  2 , а к1*к2=144,    то ОМ²=2*√144=2*12=24.

===========================================

Свойство касательной и секущей проведенных из одной точки : "Если из точки к окружности проведены касательная и секущая, то квадрат отрезка касательной от данной точки до точки касания равен произведению длин отрезков секущей от данной точки до точек её пересечения с окружностью."

Формула расстояния между точками  d=√( (х₁-х₂)²+(у₁-у₂)² ), где (х₁;у₁ ), (х₂;у₂ ) -координаты концов отрезка.


с задачей по геометрии! Она лёгкая, но я запуталась
0,0(0 оценок)
Ответ:
нор123456789
нор123456789
28.08.2021 03:48

Найдите диаметр круга, если хорда длиной 2V6 см перпендикулярна диаметру и делит его на отрезки в отношении 2:3.​

Объяснение:

ΔОМА=ΔОМВ  как прямоугольные по двум катетам ОМ-общий, ОА=ОВ как катеты ⇒МА=МВ=2√6:2=√6 (см)

По т. об отрезках пересекающихся хорд  АМ*МВ=СМ*МД

Т.к. СМ/МД=2/3 , то МД= \frac{3*CM}{2}.  Получим √6*√6= СМ*   \frac{3*CM}{2}.

СМ²=4, СМ=2 см .

Тогда МД=3 см , поэтому диаметр равен d= СМ+МД=2+3=5 (см).

d=5 см

=====================

Если две хорды окружности пересекаются, то произведение отрезков одной хорды равно произведению отрезков другой хорды.


Знайдіть діаметр кола, якщо хорда завдовжки см перпендикулярна до діаметра іділить його на відрізки
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота