Кут між висотою СН й бічною стороною прямокутної трапеції ABCD дорівнює 45градусів, більша бічна сторона трапеції - 6√2см, а більша основа - 10см. Знайдіть периметр прямокутника АВСН
1). Есть теорема о неравенстве треугольника: "Каждая сторона треугольника меньше суммы двух других сторон". Следовательно, если возьмем большую сторону и сумма двух других сторон будет БОЛЬШЕ этой стороны, то такой треугольник существует и его можно построить. В нашем случае это треугольник а) со сторонами 4,3 и5. Чтобы построить треугольник с этими сторонами, проводим прямую "а" и откладываем на ней отрезок АВ, равный любой из сторон. Например, отрезок, равный 5 см. Из концов этого отрезка радиусами, равными 4 см и 3 см, проводим циркулем дуги до их пересечения с одной стороны от прямой "а". Обозначим точку пересечения этих дуг точкой С. Соединив точки А и С, В и С, получаем искомый треугольник со сторонами 3см,4см и 5см. 2). Этот алгоритм построения треугольника по его сторонам применим и в случае равнобедренного треугольника. Нам дана сторона основания и боковая сторона треугольника. Вспомним, что боковые стороны равнобедренного треугольника равны. И за дело: на прямой "а" откладываем отрезок АВ, равный данному основанию (замерив его циркулем). И из точек А и В раствором циркуля, равным боковой стороне, делаем засечки с одной стороны от прямой. Точка пересечения этих засечек и будет вершиной С равнобедренного треугольника АВС, в котором АС=ВС. 3). Алгоритм уже сформулирован в пунктах 1) и 2).
1) 180-32 т. к угол АОС смежный с углом СОВ = 148°
2) находится угол СОВ =180-160=20° ,
ОД - биссиктриса СОВ , СОД = 20:2=10°, угол АОД =10+160=170°
3) через пусть Х. Пусть х это 1 часть тогда АВ =5х, ВС =4х ,. Т. к сумма смежных углов =180 . То составим и решим уравнение
5х+4х=180
9х=180
Х=180:9
Х=20
Ав =5*20=100°
ВС=4*20=80°
4) углы 1 и 3 вертикально, а значит равны, угол 1 и 3 =50:2 =25 °
Угол 2 и 4 =180-25 =155°
5) угол 3 = 260-180(угол1+угол2) =80
Угол 3 =угол 1 т. к они вертикальны угол 1=80°
Угол 2=180-80=100°
Так как угол 2 вертикальный с 4 уголом, то угол 4=100°
6) через пусть Х. Пусть Х это угол 3 , значит угол 2=х+30 . Тк сумма смежных углов 180 , то составим и решим уравнение
Х+Х+30=180
2х +30=180
2х=180-30
2х=50
Х=25 °
Угол 3 и 1 вертикальны, значит угол 1 равен 25°
Угол 2 и 4 = 25+30 = 55 °
7)через пусть Х. Пусть Х это угол 1 , значит угол 4 = 3х. Так как сумма смежных углов =180 . Составим и решим уравнение.
3х+х=180
4х=180
Х=180:4
Х=45
Угол 3и 1 равны так как вертикальны , угол 1 равен 45
Угол 4 и 2 вертикальны, значит равны 45*3=135
Следовательно, если возьмем большую сторону и сумма двух других сторон будет БОЛЬШЕ этой стороны, то такой треугольник существует и его можно построить.
В нашем случае это треугольник а) со сторонами 4,3 и5.
Чтобы построить треугольник с этими сторонами, проводим прямую "а" и откладываем на ней отрезок АВ, равный любой из сторон. Например, отрезок, равный 5 см. Из концов этого отрезка радиусами, равными 4 см и 3 см, проводим циркулем дуги до их пересечения с одной стороны от прямой "а". Обозначим точку пересечения этих дуг точкой С. Соединив точки А и С, В и С, получаем искомый треугольник со сторонами 3см,4см и 5см.
2). Этот алгоритм построения треугольника по его сторонам применим и в случае равнобедренного треугольника. Нам дана сторона основания и боковая сторона треугольника. Вспомним, что боковые стороны равнобедренного треугольника равны. И за дело: на прямой "а" откладываем отрезок АВ, равный данному основанию (замерив его циркулем). И из точек А и В раствором циркуля, равным боковой стороне, делаем засечки с одной стороны от прямой. Точка пересечения этих засечек и будет вершиной С равнобедренного треугольника АВС, в котором АС=ВС.
3). Алгоритм уже сформулирован в пунктах 1) и 2).