Угол между образующей конуса и плоскостью основания равен углу между образующей и радиусом основания, проведенного к данной образующей. Площадь боковой поверхности конуса: pi*R*l, площадь основания - pi*R^2. Поскольку площадь боковой поверхности в два раза больше площади основания, то pi*R*l = 2*pi*R^2. упрощаем уравнение: l = 2R. Из рисунка CB = 2OB. Из прямоугольного треугольника COB: угол, который лежит против катета, который в два раза меньше гипотенузы, равен 30 градусов. OB - катет, CB - гипотенуза, следовательно, угол BOC = 30 градусов. Искомый угол CBO = 90 - 30 = 60 градусов.
Полупериметр АВ+ВС=42/2=21 пусть АВ=х тогда ВС=21-х ΔАВС - прямоугольный по теореме Пифагора: х²+(21-х)²=(√221)² х²+(441-42х+х²)=221 х²+441-42х+х²-221=0 2х²-42х-220=0 х²-21х-110=0 Д=(-21)²-4*1*(-110)=441-440=1 х1=(21+1)/2=22/2=11 х2=(21-1)/2=20/2=10 если АВ=10, то ВС=21-10=11 если АВ=11, то ВС=21-11=10 ⇒ в любом случае одна сторона 10, другая 11 пусть АВ=10, а ВС=11 проведем высоту ВН есть формула: высота, опущенная на гипотенузу равна произведению катетов , деленному на гипотенузу т.е. ВН=(АВ*ВС)/АС=(10*11)/√221=110/√221 рассмотрим ΔАВС его площадь S(АВС)=(ВН*АС)/2=((110/√221)*√221)/2=110/2=55 ΔАВС=ΔАСД ⇒ S(АВСД)=S(АВС)+S(АСД)=55+55=110
пусть АВ=х
тогда ВС=21-х
ΔАВС - прямоугольный
по теореме Пифагора:
х²+(21-х)²=(√221)²
х²+(441-42х+х²)=221
х²+441-42х+х²-221=0
2х²-42х-220=0
х²-21х-110=0
Д=(-21)²-4*1*(-110)=441-440=1
х1=(21+1)/2=22/2=11
х2=(21-1)/2=20/2=10
если АВ=10, то ВС=21-10=11
если АВ=11, то ВС=21-11=10
⇒ в любом случае одна сторона 10, другая 11
пусть АВ=10, а ВС=11
проведем высоту ВН
есть формула: высота, опущенная на гипотенузу равна произведению катетов , деленному на гипотенузу т.е.
ВН=(АВ*ВС)/АС=(10*11)/√221=110/√221
рассмотрим ΔАВС
его площадь S(АВС)=(ВН*АС)/2=((110/√221)*√221)/2=110/2=55
ΔАВС=ΔАСД
⇒ S(АВСД)=S(АВС)+S(АСД)=55+55=110