Если периметр квадрата равен 24, легко найти длину одной стороны по формуле Р(кв.) = 4а, то есть 24 = 4а, получаем, что а = 6. Тогда можем воспользоваться теоремой Пифагора (т.к. у квадрата все углы прямые) и рассчитать длину диагонали как гипотенузу в прямоугольном ∆. Тогда получим, что х² = 6² + 6² = 2*36 = 72, а х = √72, то есть х = √(3² * 2² * 2) = 6√2. Мы берем только положительное значение, потому что арифметический квадратный корень ≥ 0, а длина строго больше 0. ответ: длина диагонали равна 6√2.
PΔ=36, треугольник правильный, значит сторона треугольника равна : 36:3=12. Опустим высоту в треугольнике до пересечения с окружностью. Соединим полученную точку с одной из оставших вершин заданного треугольника. Получим прямоугольный треугольник, гипотенуза которого является диаметром окружности. Угол между высотой треугольника и его стороной равен 30°. Высота в правильном треугольнике является и биссектрисой и медианой. 60°:2=30°. Вычислим диаметр окружности: d=12:cos30°=12:(√3/2)=24/√3=24·√3/√3·√3=24√3/3=8√3. Диагональю квадрата является диаметр окружности. Обозачим сторону квадрата через а. По теореме Пифагора: a²+a²=d², 2a²=(8√3)². 2a²=64·3, a²=32·3=16·2·3, a=√16·6=4√6. a=4√6.
36:3=12.
Опустим высоту в треугольнике до пересечения с окружностью. Соединим полученную точку с одной из оставших вершин заданного треугольника. Получим прямоугольный треугольник, гипотенуза которого является диаметром окружности. Угол между высотой треугольника и его стороной равен 30°. Высота в правильном треугольнике является и биссектрисой и медианой. 60°:2=30°.
Вычислим диаметр окружности:
d=12:cos30°=12:(√3/2)=24/√3=24·√3/√3·√3=24√3/3=8√3.
Диагональю квадрата является диаметр окружности. Обозачим сторону квадрата через а.
По теореме Пифагора: a²+a²=d², 2a²=(8√3)².
2a²=64·3,
a²=32·3=16·2·3,
a=√16·6=4√6.
a=4√6.