Решение: 1)Так как BM- медиана треугольника ABC и BM=1/2AC, то BM=AM=MC Поэтому треугольник BMC- равнобедренный с основанием BC, треугольник AMB- равнобедренный с основанием AB. 2) Так как углы при основании равнобедренного треугольника равны, ∠MBC=∠MCB, ∠MAB=∠MBA. Пусть ∠MBC=∠MCB= a Так как сумма углов треугольника равна 180º, то в треугольнике BMC ∠MBC=180º-(∠MBC+∠MCB)=180º-2a/ º∠MBC+∠AMB=180º (смежные) Поэтому, ∠AMB=180º-∠MBC=180º-(180º-2a)=2a 4)В треугольнике AMB ∠MAB=∠MBA=(180º-∠AMB)/2=90º-a 5)∠B=∠MBA+∠MBC=90º-a+a=90º ответ:90º
решение. оно основано на теореме о том, что радиус, проведенный в точку касания касательной, перпендикулярен ей.
1. соединим центры окружностей прямой с. длина этой прямой с равна: с= r + r= 8+2= 10 см.
r - радиус большой окружности, r - радиус малой
окружности.
2. проведем общую касательную. её длину назовём x. проведем радиусы в точки касания и в малой окружности, и в большой. рядом поставим обозначения r и r.
3. из центра малой окружности проведем прямую, параллельную прямой x. получим прямоугольник. его малые стороны по 2см, а
большие - по х.
4. катет х найдем из прямоугольного треугольника, где гипотенузой является с =10 см, а второй катет (назовём его в) в = r - r = 8 - 2 = 6 см.
5. по теореме пифагора находим: катет равен корню квадратному из разности квадратов гипотенузы и второго катета, то есть: х =
w30; с2 – в2 = w30; 100 – 36 = w30; 64 = 8 см
1)Так как BM- медиана треугольника ABC и BM=1/2AC, то BM=AM=MC
Поэтому треугольник BMC- равнобедренный с основанием BC,
треугольник AMB- равнобедренный с основанием AB.
2) Так как углы при основании равнобедренного треугольника равны,
∠MBC=∠MCB, ∠MAB=∠MBA.
Пусть ∠MBC=∠MCB= a
Так как сумма углов треугольника равна 180º, то в треугольнике BMC
∠MBC=180º-(∠MBC+∠MCB)=180º-2a/
º∠MBC+∠AMB=180º (смежные)
Поэтому, ∠AMB=180º-∠MBC=180º-(180º-2a)=2a
4)В треугольнике AMB
∠MAB=∠MBA=(180º-∠AMB)/2=90º-a
5)∠B=∠MBA+∠MBC=90º-a+a=90º
ответ:90º
ответ 8 см.
решение. оно основано на теореме о том, что радиус, проведенный в точку касания касательной, перпендикулярен ей.
1. соединим центры окружностей прямой с. длина этой прямой с равна: с= r + r= 8+2= 10 см.
r - радиус большой окружности, r - радиус малой
окружности.
2. проведем общую касательную. её длину назовём x. проведем радиусы в точки касания и в малой окружности, и в большой. рядом поставим обозначения r и r.
3. из центра малой окружности проведем прямую, параллельную прямой x. получим прямоугольник. его малые стороны по 2см, а
большие - по х.
4. катет х найдем из прямоугольного треугольника, где гипотенузой является с =10 см, а второй катет (назовём его в) в = r - r = 8 - 2 = 6 см.
5. по теореме пифагора находим: катет равен корню квадратному из разности квадратов гипотенузы и второго катета, то есть: х =
w30; с2 – в2 = w30; 100 – 36 = w30; 64 = 8 см