это равнобедренный треугольник т.к две стороны равны, В это вершина , а основание это А и С, биссектриса делит угол на две равные части если вершина треугольника равна 30 то решаем так чтоб найти углы основания надо сделать следующее 180-30= 150, углов две так что делим на два получается 75 тоесть углы основания 75 градусов то тогда делим угло ещё в два раза из-за биссектрисы получается 37,5 градусов(левая сторона А) тогда 75 градусов остаётся (правая сторона С) тоесть 37,5+75-180=получаем 67,5 градусов тоесть A ровно 37.5 градусов С 75, а D 67.5 вот и ответ
это равнобедренный треугольник т.к две стороны равны, В это вершина , а основание это А и С, биссектриса делит угол на две равные части если вершина треугольника равна 30 то решаем так чтоб найти углы основания надо сделать следующее 180-30= 150, углов две так что делим на два получается 75 тоесть углы основания 75 градусов то тогда делим угло ещё в два раза из-за биссектрисы получается 37,5 градусов(левая сторона А) тогда 75 градусов остаётся (правая сторона С) тоесть 37,5+75-180=получаем 67,5 градусов тоесть A ровно 37.5 градусов С 75, а D 67.5 вот и ответ
РА=РВ=РС=6 см
1. Рассмотрим Δ АОР - прямоугольный.
АО²+РО²=РА² - (по теореме Пифагора)
АО = √(РА²-РО²) = √(6² - (√13)²) = √(36-13) = √23 (см)
2. АО является радиусом описанной окружности.
R=(a√3) / 3
a= (3R) / √3 = (3√23)/√3 = √69 (см) - это длина стороны основы.
3. Находим периметр основы.
Р=3а
Р=3√69 см
4. Проводим РМ - апофему и находим ее.
Рассмотрим Δ АМР - прямоугольный.
АМ=0,5АВ=0,5√69 см
АМ²+РМ²=РА² - (по теореме Пифагора)
РМ = √(РА²-АМ²) = √(6² - (0,5√69)²) = √(36-17,25) = √18,75 = 2,5√3 (см)
5. Находим площадь боковой поверхности пирамиды.
Р = 1/2 Р₀l
Р = 1/2 · 3√69 · 2,5√3 = 3,75√207 = 3,75·3√23 = 11,25√23 (см²)
ответ. 11,25 √23 см².