Пусть точка пересечения АВ с прямой из вершины С к прямой АВ будет точка К.
А точка, в которой высота к AC из вершины В пересекает АС будет D.
Рассмотрим треугольник АВD. Так как ВD – это высота в АВС, следовательно, она образует прямой угол с AС, то есть АВD – прямоугольный треугольник. Нам известна длина гипотенузы АВ = 8 и угол при катете АD - 15º.
Найдем AD:
AD = cos15º * 8 = √(2 + √3) / 2 * 8 = 7,73.
Теперь рассмотрим треугольник АКС. КС – это минимальное расстояние от С до АВ, значит КС перпендикулярно АВ.
Треугольник АКС также прямоугольный, с гипотенузой АС и углом против катета КС- 15º.
4
Пусть точка пересечения АВ с прямой из вершины С к прямой АВ будет точка К.
А точка, в которой высота к AC из вершины В пересекает АС будет D.
Рассмотрим треугольник АВD. Так как ВD – это высота в АВС, следовательно, она образует прямой угол с AС, то есть АВD – прямоугольный треугольник. Нам известна длина гипотенузы АВ = 8 и угол при катете АD - 15º.
Найдем AD:
AD = cos15º * 8 = √(2 + √3) / 2 * 8 = 7,73.
Теперь рассмотрим треугольник АКС. КС – это минимальное расстояние от С до АВ, значит КС перпендикулярно АВ.
Треугольник АКС также прямоугольный, с гипотенузой АС и углом против катета КС- 15º.
АС = AD * 2 = 7,73 * 2 = 15,46.
КС = sin15º * 15,46 = √(2 - √3) / 2 * 15,46 = 4.
Периметр ромба равен 8 м.
Объяснение:
В ромбе диагонали взаимно перпендикулярны и являются биссектрисами углов. Следовательно ∠KEL = ∠EKL.
∠EOA = ∠EKL (дано). =>
∠KEL = ∠EAO => треугольник EOA равнобедренный.
Кроме того, АВ║LK║EF (так ∠EOA = ∠EKL соответствкнные углы при АВ и LK и секущей ЕК).
Значит ЕА = АО =1м.
АО = ОВ (так как точка О - точка пересечения диагоналей ромба).
AEFB - параллелограмм (так как АВ║EF и EA║FB). =>
EF =AB = 2·AO = 2 м.
Итак, сторона ромба равна 2м, тогда его периметр равен 8м (стороны ромба равны).