Контрольная работа № 4 по теме «Окружность и круг. Геометрические построения» В ариант 2 1. На рисунке 64 точка O — центр окружности, ∠MON = 68°. Найдите угол MKN. 2. К окружности с центром O проведена касательная AB (A — точка касания). Найдите радиус окружности, если OB = 10 см и ∠ABO = 30°. 3. В окружности с центром O проведены диаметр MN и хорды NF и NK так, что NF = NK (рис. 65). Докажите, что ∠MNK =∠MNF. 4. Постройте треугольник по двум сторонам и медиане, проведённой к одной из них. 5. Даны прямая и две точки вне её. Найдите на этой прямой точку, равноудалённую от этих двух точек. Сколько решений может иметь задача?
Будем считать, что условие я, всё-таки, понял правильно.... Смотрим рисунок: В прямоугольном Δ-ке середина гипотенузы (на рисунке - О) есть центр описанной окружности, значит ОА=ОС=ОВ Если прямой угол делится в отношении 1:2, то ∠АСО=30°, ∠ОСВ=60° Т.к. ОС=ОВ, то ΔСОВ - равнобедренный, ∠ОСВ=∠ОВС=60°, но тогда также ∠СОВ=60°, таким образом, ΔСОВ не только равнобедренный, но и раносторонний: ОС=ОВ=ВС=10 см ∠САВ=30°, значит гипотенуза АВ=2ВС=20 см Меньшая средняя линия равна половине меньшей стороны: ОМ=ВС/2=5 см
АВС - треугольник С =90 град СК - медиана (АК+КВ) уг КСВ : уг. АСК = 1 : 2 Обозначим через х коэфф.пропорции и составим уравение х+2х=90 3х=90 х=30 Следовательно, КСВ=30 град АСК= 60 град Наименьшая сторона лежим против меньшего угла. Рассмотрим треугольник СКМ (КМ перпендикулярна СВ и делит СВ пополам, то есть является средней линией треугольника. Треугольник КСМ прямоугольный. В прямоугольном треугольнике катет лежащий против угла в 30 градусов равен половине гипотенузы. СК - гипотенуза, СК=10 см (по условию). Значит КМ=5 см Медиана прямоугольного треугольника, проведенная из вершины прямого угла равна половине гипотенузы. Значит, гипотенуза АВ= 2*10=20 см
Смотрим рисунок:
В прямоугольном Δ-ке середина гипотенузы (на рисунке - О) есть центр описанной окружности, значит ОА=ОС=ОВ
Если прямой угол делится в отношении 1:2, то ∠АСО=30°, ∠ОСВ=60°
Т.к. ОС=ОВ, то ΔСОВ - равнобедренный, ∠ОСВ=∠ОВС=60°, но тогда также ∠СОВ=60°, таким образом, ΔСОВ не только равнобедренный, но и раносторонний:
ОС=ОВ=ВС=10 см
∠САВ=30°, значит гипотенуза АВ=2ВС=20 см
Меньшая средняя линия равна половине меньшей стороны:
ОМ=ВС/2=5 см
С =90 град
СК - медиана (АК+КВ)
уг КСВ : уг. АСК = 1 : 2
Обозначим через х коэфф.пропорции и составим уравение
х+2х=90
3х=90
х=30
Следовательно, КСВ=30 град
АСК= 60 град
Наименьшая сторона лежим против меньшего угла.
Рассмотрим треугольник СКМ (КМ перпендикулярна СВ и делит СВ пополам, то есть является средней линией треугольника. Треугольник КСМ прямоугольный. В прямоугольном треугольнике катет лежащий против угла в 30 градусов равен половине гипотенузы. СК - гипотенуза, СК=10 см (по условию). Значит КМ=5 см
Медиана прямоугольного треугольника, проведенная из вершины прямого угла равна половине гипотенузы. Значит, гипотенуза АВ= 2*10=20 см