Пусть каждый угол пятиугольника равен соответственно х, 3х, 5х, 16х, 2х.
Составим уравнение -
х+3х+5х+16х+2х = 540°
27х = 540°
х = 20°.
2х = 20°*2 = 40°.
3х = 20°*3 = 60°.
5х = 20°*2 = 100°.
16х = 20°*16 = 320°.
Но здесь есть противоречие, так как в условии написано, что пятиугольник выпуклый, а градусная мера угла выпуклого многоугольника не может превышать 180°.
Следовательно, задача не имеет решений, либо составлена неправильно.
Сумма углов любого выпуклого n-угольника вычисляется по формуле : 180°(n-2) ; где n - количество его сторон.
Сумма углов выпуклого пятиугольника = 180°*(5-2) = 540°.
Пусть каждый угол пятиугольника равен соответственно х, 3х, 5х, 16х, 2х.
Составим уравнение -
х+3х+5х+16х+2х = 540°
27х = 540°
х = 20°.
2х = 20°*2 = 40°.
3х = 20°*3 = 60°.
5х = 20°*2 = 100°.
16х = 20°*16 = 320°.
Но здесь есть противоречие, так как в условии написано, что пятиугольник выпуклый, а градусная мера угла выпуклого многоугольника не может превышать 180°.
Следовательно, задача не имеет решений, либо составлена неправильно.
ответ:Найди площадь круга, вписанного в равнобедренную трапецию с основаниями длиной 6 см и 12 см и периметром 36 см
Объяснение:
АВСМ- описанная трапеция⇒ суммы длин противоположных сторон равны. Т.е 6+12=АВ+СМ⇒ АВ=СМ=9 см. Пусть ВК⊥АМ , СР⊥АМ.
S(круга)=πr². Радиус вписанной в трапецию окружности будет равен половине высоты трапеции.
Т.к. ВК⊥АМ , СР⊥АМ, то КВСР-прямоугольник ⇒
КР=6 см, АК=РМ=(12-6) :2=3 (см).
ΔАВК-прямоугольный, по т. Пифагора :
ВК=√(9²-3²)=√((9-3)(9+3))=√(6*12)=6√2(см).
ВК-высота трапеции, значит r=3√2 см.
S(круга)= π (3√2 )²=18π (см²).
https://seoi.net/peni3d/