Контрольна робота No 5
Многокутники. Площі многокутників
1. Знайти суму кутів п’ятнадцятикутника. ( )
2. Скільки вершин у n-кутника, якщо сума його кутів дорівнює 2880° ? ( )
3. Знайти площу прямокутника, якщо ширина дорівнює 13 дм, а його
периметр дорівнює 62 дм. ( )
4. Площа паралелограма дорівнює 243 см2, а одна з його сторін 27 см. Знайти
висоту,проведену до цієї сторони. ( )
5. Зайдіть площу трикутника, якщо його сторона дорівнює 16,5 см, а висота
проведена до цієї сторони – 8,8 см. ( )
6. Основи трапеції дорівнюють а і b, а висота – с . Знайти площу трапеції,
якщо: а = 14 см, b = 0,5 а, h = 8 см. ( )
7. Площа прямокутного трикутника S, а його катети відносяться, як а : b.
Знайдіть катети, якщо S = 1296 см2, a = 9, b = 8. ( )
8. Площа ромба дорівнює 108 см2. Знайдіть його діагоналі, якщо вони
відносяться, як 2 : 3. ( )
9. Основа трикутника дорівнює 18 см, а висота – 20 см. Знайдіть площу
трикутника, утвореного середніми лініями даного трикутника. ( )
2
Угол А + угол С =156°
угол В=180 - (угол А+ угол С)=180-156=24°
т.к углы при основании равнобедренного треугольника равны, то:
угол А=угол С= 1/2•156=78°
ответ:79;24;78
1
т.к угол АОС=110°
то угол DOC=180- угол АОС=180-110=70°(т.к смежные углы в сумме дают 180°)
угол ВОА=углу DOC=70°(т.к вертикальные)
Рассмотрим треугольник СОD
(угол ОDC=углу ADC)
угол С= 180 - угол DOC- угол ODC=180-70-45=65°
Рассмотрим треугольник ВАО
(угол АВС=АВО)
угол ВАО=180- угол АВО- угол ВОА=180-65-70=45°
т.к угол ВАО=ODC=45°
т.к АВ=CD
т.к угол АВО=C=65°
то треугольники равны по 2 ому признаку
11. т.к. АВ⊥ВС, т.к. по условию АВ ⊥(АВС), то ∠АСВ=45°, то АВ=СВ, и 2АВ²=(6√2)²⇒АВ²+36
АD=√(ВD²+АВ²)=√(64+36)=100 дважды по Пифагору. ответ в)10
12. ответ в)4
АС=ВС√2, площадь 32=ВС²⇒ВС =4√2, АС=4√2*√2=8, СС₁⊥(АВС), АС₁-проекция АС на (АВС), тогда ∠САА₁=30°, в Δ САА₁: СС₁=8/2=4/см/- катет против угла в 30°, а он и есть расстояние от ВС до плоскости∝
14. ВD=AB√2=BB₁√2, ΔВDB₁ - прямоугольный. (BD- проекция диагонли B₁D на (АВС), ctg∠B₁DD=BD/BB₁ =BB₁√2/BB₁=√2
верный ответ б) √2
13. Т.к. DА⊥(АВС), АС- проекция DC на (АВС), и ВС⊥АС по условию, то по теореме о трех перпендикулярах DC⊥BC, и значит, расстояние от точки D до прямой ВС равно DС по Пифагору
DC=√(DA²+AC²), АС²=АВ²-ВС²=(225-81)=144; DC=√(144+25)=169=13/см/
ответ а) 13