В тр-ке АВС АВ=18, ВС=26, АС=32. Напротив меньшей стороны лежит меньший угол (∠С), а две другие стороны примыкают к нему. В нашем случае это стороны ВС и АС. Пусть СМ - биссектриса, АМ=х, ВМ=у. АВ=АМ+ВМ=х+у. у=АВ-х=18-х. Отрезки, на которые биссектриса делит противоположную сторону, относятся друг к другу так же, как и примыкающие к ним соответствующие боковые стороны: АМ/ВМ=АС/ВС х/у=32/26=16/13 у=13х/16 18-х=13х/16 288-16х=13х 29х=288
Из двух отрезков АМ и ВМ больший тот, к которому примыкает большая сторона. АС>ВС, значит АМ>ВМ ответ: больший отрезок
5) ∠Q=∠M=∠N=180°:3=60° все стороны равны- Δ равносторонний и у него все углы равны по теореме о сумме трёх углов Δ
∠Q=∠M=∠N=180°:3=60°
6)∠E=90°;
∠P=90°-60°=30° по теореме о сумме острых углов прямоугольногоΔ.
7) MD=DN, ΔMDN- равносторонний,∠M и∠N- углы при основанииΔ
∠M=∠N=(180°-100°)/2=40°.
9) MN=NK, ΔMNK - равносторонний ∠M и∠K - углы при основанииΔ
∠M=180°-130°=50°; как смежный с внешним∠
∠M=∠K=50°;∠N=130°-∠K=80°.( как сумма двух углов против внешнего угла треугольника)
10)∠E=180°-140°=40°; как смежный с ∠CEF
∠D=180°-80°-40°=60° ( по теореме о сумме трёх углов).
11)∠C=90, ∠A=180°-150°=30°; ∠B=90-30°=60° по теореме о сумме острых углов прямоугольногоΔ.
Напротив меньшей стороны лежит меньший угол (∠С), а две другие стороны примыкают к нему. В нашем случае это стороны ВС и АС.
Пусть СМ - биссектриса, АМ=х, ВМ=у.
АВ=АМ+ВМ=х+у.
у=АВ-х=18-х.
Отрезки, на которые биссектриса делит противоположную сторону, относятся друг к другу так же, как и примыкающие к ним соответствующие боковые стороны: АМ/ВМ=АС/ВС
х/у=32/26=16/13
у=13х/16
18-х=13х/16
288-16х=13х
29х=288
Из двух отрезков АМ и ВМ больший тот, к которому примыкает большая сторона. АС>ВС, значит АМ>ВМ
ответ: больший отрезок