Конус, К - вершина, КО- высота=радиус= R, сечение равнобедренный треугольник АКС, проводим радиусы ОА и ОС= R, треугольникАОС прямоугольный (уголАОС=90 - центральный=дугеАС), равнобедренный, АС=корень(ОА в квадрате+ОС в квадрате)=корень( R в квадрате+ R в квадрате)= R*корень2, проводим высоту ОН в треугольнике АОС =медиане=биссектрисе=1/2АС= R*корень2/2, треугольникОКН прямоугольный, КН=корень(ОК в квадрате+ОН в квадрате)=( R в квадрате+2* R в квадрате/4)= R*корень(3/2). площадь АКС=1/2*АС*КН=1/2* R*корень2* R*корень(3/2)= R*корень3/2
Площадь прямоугольного треугольника равна 84 дм², а радиус окружности, вписанной в этот треугольник, 3см. Найти катеты треугольника.
Пусть дан треугольник АВС, угол С=90º
Точки касания вписанной окружности на АС- точка К, на ВС - точка Н, на гипотенузе АВ- точка М.
Пусть АК=х, ВН=у.
Тогда по свойству отрезков касательных из одной точки АМ=х, ВМ=у
АВ=х+у
АС=х+3, ВС=у+3
Формула радиуса вписанной окружности
r=S:p, где r -радиус, S - площадь треугольника. р- его полупериметр
р=х+у+3
3=84:(х+у+3)
х+у+3=28⇒
х+у=25
у=25-х
АВ=х+у=25 дм
АС=х+3
ВС=25-х+3=28-х
По т.Пифагора
(х+3)²+(28-х)²=625
Произведя вычисления и приведя подобные члены, получим квадратное уравнение
х²-25х+84=0
D=25²-4·84=289
Решив уравнение, найдем два корня: 21 и 4
АС=21+3=24 дм
ВС=28-21=7 дм
Кстати, длины сторон этого треугольника из Пифагоровых троек, где стороны относятся как 7:24:25