Гегель использует термин Mittelasien для обозначения области, населённой монголами. Термин «Средняя Азия» зафиксирован в трудах историка С. М. Соловьёва, под которым понимается степной географический регион к юго-востоку от Русской равнины и востоку от Каспийского моря.
В древности в Средней Азии существовали довольно крупные государства. В VII—V вв. до н. э. в долине Зарафшана существовало государство Согдиана, в среднем течении Амударьи — Бактрия, в нижнем её течении — Хорезм, в долине Мургаба — Маргиана. Северная часть Средней Азии входила в состав Скифии, а южная часть находилась в сфере влияния Ирана.
Первые сведения о Средней Азии встречаются в трудах Геродота, Страбона, Арриана, Птолемея и других.
ответ А решение: правильный треугольник вписан в окружность, значит центр окружности лежит в центре треугольника. проведем три радиуса в вершины треугольника, получим 3 равнобедренных треугольника с большей стороной равной 30/3=10 см. в одном треугольнике проведем высоту. высота в равнобедренном треугольнике является и мереданной и бессектрисой и делит большую сторону пополам 10/2=5. далее находим радиус окружности это косинус(30)=5/Х. отсюда Х =10/корень3. далее проводим радиусы в квадратк к вершинам. и находим сторону квадрата косинус45=радиус/Х отсюда Х равен 10×корень6/3. перимитр равен 4×Х и равен 40корень6/3
Гегель использует термин Mittelasien для обозначения области, населённой монголами. Термин «Средняя Азия» зафиксирован в трудах историка С. М. Соловьёва, под которым понимается степной географический регион к юго-востоку от Русской равнины и востоку от Каспийского моря.
В древности в Средней Азии существовали довольно крупные государства. В VII—V вв. до н. э. в долине Зарафшана существовало государство Согдиана, в среднем течении Амударьи — Бактрия, в нижнем её течении — Хорезм, в долине Мургаба — Маргиана. Северная часть Средней Азии входила в состав Скифии, а южная часть находилась в сфере влияния Ирана.
Первые сведения о Средней Азии встречаются в трудах Геродота, Страбона, Арриана, Птолемея и других.
решение: правильный треугольник вписан в окружность, значит центр окружности лежит в центре треугольника. проведем три радиуса в вершины треугольника, получим 3 равнобедренных треугольника с большей стороной равной 30/3=10 см. в одном треугольнике проведем высоту. высота в равнобедренном треугольнике является и мереданной и бессектрисой и делит большую сторону пополам 10/2=5. далее находим радиус окружности это косинус(30)=5/Х. отсюда Х =10/корень3. далее проводим радиусы в квадратк к вершинам. и находим сторону квадрата косинус45=радиус/Х отсюда Х равен 10×корень6/3. перимитр равен 4×Х и равен 40корень6/3