Периметр ромба це сума всіх його сторін, а оскільки всі сторони у ромба рівні, то сторона ромба = 10 см. Відома одна діагональ. Оскільки діагоналі ромба дііляться в точці перетину навпіл під прямим кутом, то утворюються 4 рівні прямокутні трикутники. Розглянемо трикутник з відомими двома сторонами 10 см та 12см : 2 = 6см. За теоремою Піфагора знайдемо половину другої діагоналі.
Половина другої діагоналі 8 см, то ж діагональ = 8*2=16 см
1) расстояние от центра до одного из катетов =2,5 см - это средняя линия треугольника и,значит,другой равен 5 см, а второй катет находим по теореме Пифагора 13² = 5² +х ² х² = 169 -25 х² = 144 х = 12 2) треугольник АСЕ прямоугольный , у которого одна сторона равна 4, другая 8 а, третья по теореме Пифагора 8² = 4² + х² х² = 64 - 16 х² = 48 х = 4√3 радиус вписанной окружности найдем из площади треугольника 1/2 Р*r = 1/2 ab 1/2 (4 +8 +4√3)*r = 1/2 *4 *4√3 (12 +4√3)*r = 16√3 (3 +√3)*r = 4√3 r = 4√3/(3+√3)? избавимся от иррациональности в знаменателе r = 2*(√3 -1)
Відповідь:
Площа ромба 96 см2
Пояснення:
Периметр ромба це сума всіх його сторін, а оскільки всі сторони у ромба рівні, то сторона ромба = 10 см. Відома одна діагональ. Оскільки діагоналі ромба дііляться в точці перетину навпіл під прямим кутом, то утворюються 4 рівні прямокутні трикутники. Розглянемо трикутник з відомими двома сторонами 10 см та 12см : 2 = 6см. За теоремою Піфагора знайдемо половину другої діагоналі.
Половина другої діагоналі 8 см, то ж діагональ = 8*2=16 см
Тепер можемо знайти площу ромба за формулою:
х² = 169 -25
х² = 144
х = 12
2) треугольник АСЕ прямоугольный , у которого одна сторона равна 4, другая 8 а, третья по теореме Пифагора 8² = 4² + х²
х² = 64 - 16
х² = 48
х = 4√3
радиус вписанной окружности найдем из площади треугольника
1/2 Р*r = 1/2 ab
1/2 (4 +8 +4√3)*r = 1/2 *4 *4√3
(12 +4√3)*r = 16√3
(3 +√3)*r = 4√3
r = 4√3/(3+√3)? избавимся от иррациональности в знаменателе
r = 2*(√3 -1)