Катеты прямоугольного треугольника равны 30 дм и 10 дм. Из основания перпендикуляра проведенного из вершины прямого угла на гипотенузу, опущен перпендикуляр на меньший катет данного прямоугольного треугольника. На какие части основание этого перпендикуляра разбивает данный катет? 2) Две стороны треугольника равны 18 и 13 дм. Его медиана проведенная к первой из данных сторон равна 8 дм. Найдите углы и третью сторону этого треугольника. 3) Основания равнобокой трапеции равны 14 дм и 40 дм расстояние между ними 39 дм. Около данной трапеции описана окружность, проходящая через все ее вершины. Найдите длину этой окружности.
Противоположные стороны параллелограмма равны.
AD = BC = 30,2 см
AB = CD = 13,3 см
Объяснение:
Диагонали параллелограмма точкой пересечения делятся пополам, =>
АО = ОС = АС / 2 = 20 см
BO = OD = BD /2 = 12 см
Из ΔАВО по теореме косинусов:
АВ² = АО² + ВО² - 2АО·ВО·cos40°
AB² = 400 + 144 - 2 · 20 · 12 · 0,766 ≈ 176,32
AB = 13,3 см
∠ВОС = 180° - 40° = 140° (так как, они смежные)
Из треугольника ВОС по теореме косинусов:
BC² = BO² + CO² - 2BO·CO·cos140°
BC² = 144 + 400 - 2 · 12 · 20 · (- 0,766) ≈ 911,68
BC = 30,2 см
1. S ромба = asin, где а-сторона ромба, -угол
S = 8^2*sin150= 64*sin(180-30)=64*sin30=64*1/2=32 (см2)
2. Параллелограм АВСД, АВ=5 , ВД=7, Угол А=60
Проводим перпендикуляр ВК на АД.
Треугольник АВК, прямоугольный , угол А= 60, угол АВК=90-60=30
АК = 1/2 АВ =5/2 =2,5 , тю к лежит напротив угла 30
ВК = корень(АВ в квадрате - АК в квадрате) = корень (25 - 6,25) = корень 18,75 =4,3
В треугольнике ВКД :
КД = корень (ВД в квадрате - ВК в квадрате) = корень (49-18,75)= корень 30,25=5,5
АД = 2,5+5,5=8
Площадь= АД х ВК = 8 х 4,3 = 34,4 см2
3. S=(6+9)*3,5=52,5 см2
4. на фото решение