ОПРЕДЕЛЕНИЕ 1 Если точка начала какого-либо вектора , то говорят, что вектор отложен от точки (рис. 1).
сложение векторов по правилу параллелограмма или треугольника
ТЕОРЕМА 1 От любой точки можно отложить вектор единственный .
Существование: Имеем два следующих случая:
Вектор - нулевой.
Здесь получаем, что искомый нами вектор совпадает с вектором .
Вектор не является нулевым.
Пусть точка является началом вектора , а точкой - конец вектора . Проведем через точку прямую параллельную вектору . Будем откладывать на прямой отрезки и . Рассмотрим векторы и . Из этих двух векторов нужный нам вектор -- вектор, сонаправленный с вектором (рис.2)
Рисунок 2.
Из данного выше построения сразу же будет следовать единственность данного вектора.
Сумма векторов. Сложение векторов. Правило треугольника
СУММОЙ ДВУХ ВЕКТОРОВ и называется третий вектор , проведенный из начала к концу , если начало вектора совпадает с концом вектора .
Сложение векторов выполняется по правилу треугольника или по правилу параллелограмма.
сложение векторов по правилу параллелограмма или треугольника
СУММОЙ НЕСКОЛЬКИХ ВЕКТОРОВ ,, называется вектор , получающийся в результате последовательного сложения данных векторов.
Такая операция выполняется по правилу многоугольника.
сумма нескольких векторов
КОММУТАТИВНЫЙ ЗАКОН СЛОЖЕНИЯ
АССОЦИАТИВНЫЙ ЗАКОН СЛОЖЕНИЯ
СУММА ВЕКТОРОВ В КООРДИНАТАХ
При сложении двух векторов соответствующие координаты складываются.
Отметим несколько свойств сложения двух векторов:
Для произвольного вектора выполняется равенство
Для произвольных точек
и
справедливо следующее равенство
ЗАМЕЧАНИЕ Таким также можно строить сумму любого числа векторов. Тогда оно будет носить название правила многоугольника.
сумма нескольких векторов
Разность векторов. Вычитание векторов
РАЗНОСТЬЮ ДВУХ ВЕКТОРОВ и называется вектор при условии:
, если
РАЗНОСТЬ ВЕКТОРОВ и равна сумме вектора и противоположного вектора :
вычитание векторов
РАЗНОСТЬ ДВУХ ОДИНАКОВЫХ ВЕКТОРОВ равна НУЛЕВОМУ ВЕКТОРУ :
Векторы: , , , ,
Нулевой вектор:
Координаты векторов: , , , , ,
ОПРЕДЕЛЕНИЕ 1 Если точка начала какого-либо вектора , то говорят, что вектор отложен от точки (рис. 1).
сложение векторов по правилу параллелограмма или треугольника
ТЕОРЕМА 1 От любой точки можно отложить вектор единственный .
Существование: Имеем два следующих случая:
Вектор - нулевой.
Здесь получаем, что искомый нами вектор совпадает с вектором .
Вектор не является нулевым.
Пусть точка является началом вектора , а точкой - конец вектора . Проведем через точку прямую параллельную вектору . Будем откладывать на прямой отрезки и . Рассмотрим векторы и . Из этих двух векторов нужный нам вектор -- вектор, сонаправленный с вектором (рис.2)
Рисунок 2.
Из данного выше построения сразу же будет следовать единственность данного вектора.
Сумма векторов. Сложение векторов. Правило треугольника
СУММОЙ ДВУХ ВЕКТОРОВ и называется третий вектор , проведенный из начала к концу , если начало вектора совпадает с концом вектора .
Сложение векторов выполняется по правилу треугольника или по правилу параллелограмма.
сложение векторов по правилу параллелограмма или треугольника
СУММОЙ НЕСКОЛЬКИХ ВЕКТОРОВ ,, называется вектор , получающийся в результате последовательного сложения данных векторов.
Такая операция выполняется по правилу многоугольника.
сумма нескольких векторов
КОММУТАТИВНЫЙ ЗАКОН СЛОЖЕНИЯ
АССОЦИАТИВНЫЙ ЗАКОН СЛОЖЕНИЯ
СУММА ВЕКТОРОВ В КООРДИНАТАХ
При сложении двух векторов соответствующие координаты складываются.
Отметим несколько свойств сложения двух векторов:
Для произвольного вектора выполняется равенство
Для произвольных точек
и
справедливо следующее равенство
ЗАМЕЧАНИЕ Таким также можно строить сумму любого числа векторов. Тогда оно будет носить название правила многоугольника.
сумма нескольких векторов
Разность векторов. Вычитание векторов
РАЗНОСТЬЮ ДВУХ ВЕКТОРОВ и называется вектор при условии:
, если
РАЗНОСТЬ ВЕКТОРОВ и равна сумме вектора и противоположного вектора :
вычитание векторов
РАЗНОСТЬ ДВУХ ОДИНАКОВЫХ ВЕКТОРОВ равна НУЛЕВОМУ ВЕКТОРУ :
Примем половину боковой стороны за х, вся сторона равна 2х.
Косинус угла В при основании равен (4√6/2)/2х = √6/х.
Косинус этого же угла определим по теореме косинусов из треугольника АВЕ: cos B = (4√6)² + x² - 21²)/(2*(4√6)*x.
Приравняем значения косинуса:
(4√6)² + x² - 21²)/(2*(4√6)*x = √6/х.
Приведём к общему знаменателю.
96 + x² - 441 = √6*8√6.
x² = 48 + 441 - 96 = 393.
Отсюда х = √393, а боковая сторона равна 2√393 см.
Найдём высоту СД (она же и медиана к основанию).
СД = √((2√393)² - (2√6)²) = √(1572 - 24) = √1548 = 6√43 ≈ 39,34463 см.
По свойству медиан ОД = (1/3)СД = 2√43 ≈ 13,11488.
ответ: ОД = 2√43 см.