1) Это перпендикуляр, т.к. проведён под прямым углом из точки B к прямой а(на ней прямой угол)
2) AB - наклонная, т.к. проведена под углом, не равным 90*, проведена из точки B, т.к. она является началом наклонной, при условии, что проведена к прямой а
3) Расстояние от точки до прямой будет длиной перпендикуляра, если он проведён из точки к прямой, ибо в других случаях это условие уже нарушается
4) Т.к. перпендикуляр является самым коротким расстоянием от точки до прямой, до все остальные наклонные будут длиннее перпендикуляра
5) Они равноудалены от другой прямой, т.к. проведя перпендикуляр из одной точки к другой точке второй прямой, оно будет всегда одним и тем же
Так как CC₁ перпендикулярна плоскости (A₁B₁C₁), в которой лежит B₁D₁, то расстояние будет длина общего перпендикуляра двух скрецивающихся прямых СС₁ и Д₁В₁, т.е. высота C₁Т треугольника B₁C₁D₁. Стороны треугольника B₁C₁ = C₁D₁ = a, B₁D₁= а√2 (по теореме Пифагора как диагональ верхнего основания) . Треугольник Д₁С₁В₁ равнобедренный => высота, проведенная к основанию, и медиана совпадают, т. е. B₁Т = ТD₁ = а√2/2. По теореме Пифагора из треугольника B₁C₁Т ищем высоту C₁Т и получаем
ответ: 1 - 2; 2 - 1; 3 - 2; 4 - 4; 5 - 4
Док-ва:
1) Это перпендикуляр, т.к. проведён под прямым углом из точки B к прямой а(на ней прямой угол)
2) AB - наклонная, т.к. проведена под углом, не равным 90*, проведена из точки B, т.к. она является началом наклонной, при условии, что проведена к прямой а
3) Расстояние от точки до прямой будет длиной перпендикуляра, если он проведён из точки к прямой, ибо в других случаях это условие уже нарушается
4) Т.к. перпендикуляр является самым коротким расстоянием от точки до прямой, до все остальные наклонные будут длиннее перпендикуляра
5) Они равноудалены от другой прямой, т.к. проведя перпендикуляр из одной точки к другой точке второй прямой, оно будет всегда одним и тем же
Так как CC₁ перпендикулярна плоскости (A₁B₁C₁), в которой лежит B₁D₁, то расстояние будет длина общего перпендикуляра двух скрецивающихся прямых СС₁ и Д₁В₁, т.е. высота C₁Т треугольника B₁C₁D₁. Стороны треугольника B₁C₁ = C₁D₁ = a, B₁D₁= а√2 (по теореме Пифагора как диагональ верхнего основания) . Треугольник Д₁С₁В₁ равнобедренный => высота, проведенная к основанию, и медиана совпадают, т. е. B₁Т = ТD₁ = а√2/2. По теореме Пифагора из треугольника B₁C₁Т ищем высоту C₁Т и получаем
√(а²-( а√2/2)²) =а√2/2