Какую роль играют ремарки в тексте комедии? Для кого они предназначены? Приведите примеры ремарки из первого действия комедии. Недоросль училка строгая убьет это литература не на тот предмет нажила.
АВ = Рabcd : 4 = 12 : 4 = 3 см ВВ₁ и DD₁ - медианы, значит AD₁ = D₁B = AB₁ = B₁D = 3/2 см
ΔABD равнобедренный, поэтому ∠ABD = ∠ADB, BD₁ = DB₁, BD - общая сторона для ΔDD₁B и ΔBB₁D, значит эти треугольники равны по двум сторонам и углу между ними, ⇒ BB₁ = DD₁.
Медианы точкой пересечения делятся в отношении 2 : 1, считая от вершины. Обозначим OD₁ = OB₁ = x, тогда OD = OB = 2x. ΔOBD равнобедренный, значит ∠OBD = ∠ODB = 40°. ∠D₁OB = ∠OBD + ∠ODB = 80° как внешний угол ΔDOB.
Если необходимо числовое значение, а не выражение, можно взять значение cos 80° по таблице, тогда получится: cos 80° ≈ 0,1736 BB₁ = 9 / (2√(5 - 4cos80°)) ≈ 2,2
Пусть LR – средняя линия трапеции ABCD
Угол CDA=угол BMA по условию, тогда прямые CD u BM – паралельны, а углы CDA и BMA – соответственные при параллельных прямых CD u BM и секущей AD.
ВС//AD (так как основания трапеции параллельны) => ВС//MD
Исходя из найденного: BCDM – параллелограмм, так как его стороны попарно параллельны.
Следовательно ВС=MD=5 так как противоположные стороны параллелограмма равны.
Угол BAD=угол CKD по условию, тогда прямые BA u CK – паралельны, а углы BAD и CKD – соответственные при параллельных прямых ВА u СК и секущей AD.
ВС//AD (так как основания трапеции параллельны) => ВС//AK
Исходя из найденного: BCKA – параллелограмм, так как его стороны попарно параллельны.
Следовательно AK=ВС=5 так как противоположные стороны параллелограмма равны.
Средняя линия трапеции равна полусумме оснований.
Тоесть LR=(BC+AD)÷2
BC=5 (найдено ранее);
АD=AK+KM+MD=5+4+5=14
Тогда LR=(5+14)÷2=9,5
ответ: 9,5
ВВ₁ и DD₁ - медианы, значит
AD₁ = D₁B = AB₁ = B₁D = 3/2 см
ΔABD равнобедренный, поэтому
∠ABD = ∠ADB,
BD₁ = DB₁, BD - общая сторона для ΔDD₁B и ΔBB₁D, значит эти треугольники равны по двум сторонам и углу между ними, ⇒
BB₁ = DD₁.
Медианы точкой пересечения делятся в отношении 2 : 1, считая от вершины.
Обозначим OD₁ = OB₁ = x, тогда OD = OB = 2x.
ΔOBD равнобедренный, значит ∠OBD = ∠ODB = 40°.
∠D₁OB = ∠OBD + ∠ODB = 80° как внешний угол ΔDOB.
Рассмотрим ΔD₁OB. По теореме косинусов
D₁B² = OD₁² + OB² - 2·OD₁·OB·cos 80°
9/4 = x² + 4x² - 2 · x · 2x · cos80°
9/4 = 5x² - 4x² · cos80°
9/4 = x² (5 - 4cos80°)
x² = 9 / (4(5 - 4cos80°))
x = 3 / (2√(5 - 4cos80°))
BB₁ = 3x = 9 / (2√(5 - 4cos80°)) или
Если необходимо числовое значение, а не выражение, можно взять значение cos 80° по таблице, тогда получится:
cos 80° ≈ 0,1736
BB₁ = 9 / (2√(5 - 4cos80°)) ≈ 2,2