Какой выигрыш в силе дает гидравлический пресс у которого площадь малого поршня составляет 800 см в квадрате большого 2400в квадрате .какая сила действует на его большой поршень если намалый поставить гирю масса 9 кг
УГОЛ (ПРЯМОЙ, ОСТРЫЙ, ТУПОЙ) Мама мой взяла листок, И загнула уголок, Угол вот такой у взрослых Называется ПРЯМЫМ. Если угол уже -ОСТРЫМ, Если шире, то -ТУПЫМ.
Я ОСТРЫЙ - начертить хочу, Сейчас возьму и начерчу. Веду из точки две прямых, Как будто два луча, И видим ОСТРЫЙ УГОЛ мы, как остриё меча. А для УГЛА ТУПОГО Всё повторяем снова: Из точки две прямых ведём, Но их пошире разведём. На чертёж мой посмотри, Он, как ножницы внутри, Если их за два кольца Мы раздвинем до конца.
ТРЕУГОЛЬНИК Самолёт летит по небу, Треугольное крыло, На моём велосипеде, Треугольное седло, Есть такой предмет - угольник, И всё это - ТРЕУГОЛЬНИК. Тут мама три спички На стол положила И мне треугольник Из спичек сложила. А в это время я чертил И наблюдал за мамою, Я три прямых соединил И сделал то же самое.
КВАДРАТ Пришёл из школы старший брат, Из спичек выложил квадрат. Дала мне мама шоколад, Я дольку отломил - квадрат. И стол -квадрат, и стул - квадрат, И на стене плакат - квадрат, Доска, где шахматы стоят, И клетка каждая - квадрат, Стоят там кони и слоны, Фигуры боевые. КВАДРАТ - четыре стороны, Все стороны его равны, И все углы прямые.
ОКРУЖНОСТЬ и КРУГ Мы живём с братишкой дружно, Нам так весело вдвоём, Мы на лист поставим кружку, Обведём карандашом. Получилось то, что нужно - Называется ОКРУЖНОСТЬ. Мой брат по рисованию Себя считает матером, Всё, что внутри окружности, Закрасил он фломастером. Вот вам красный круг, кружок, По краю синий ободок. КРУГ - тарелка, колесо, ОКРУЖНОСТЬ - обруч, поясок. ОКРУЖНОСТЬ - очертанье КРУГА. Я смотрю на наш листок, Стал искать у круга угол, Но найти его не смог. Брат смеётся - вот дела! Да у круга нет угла, У тарелки и монеты Не найдёшь углов, их нету.
ТРАПЕЦИЯ Трапеци, трапеция, Фигура есть такая, А я её не знаю. Ты где живёшь, трапеция, В Америке, в Китае? Может, за трапецией Поехать надо в Грецию? Мама говорит: - Не надо, Трапеция с тобою рядом. Развею я твою тоску, Ты подожди минутку. И на гладильную доску Укладывает юбку, По ней проводит утюжком, Чтоб не топорщилась мешком: - Вот тебе ТРАПЕЦИЯ, Не стоит ехать в Грецию.
ОВАЛ А как нарисовать овал? На брата я позвал. Брат взял фломастер и искусно Мне овал нарисовал: Ты слегка окружность сплюсни, Получается ОВАЛ. Сколько раз его видал, В ванной зеркало -овал! Овал и блюдо, и яйцо. Мама говорит :-Лицо У тебя овальное. Пусть будет овальное, Лишь бы не печальное. Мы рассмеялись и в овале Рожицу нарисовали. Овал - окружность удлинённая И рожица в ней удивлённая.
ОбъяІншими словами: дві фігури називаються подібними, якщо вони переводяться одна в одну перетворенням подібності. Подібність фігур, як і подібність трикутників, позначають спеціальним знаком: *. Запис F * F1 читається як «фігура F подібна фігурі F1».
З означення подібності фігур випливає, що рівні фігури — подібні (коефіцієнт подібності дорівнює одиниці).
Властивості подібних фігур
1) Кожна фігура подібна собі (коефіцієнт подібності дорівнює 1).
2) Якщо фігура F подібна фігурі F1 з коефіцієнтом подібності k, то фігура F1 подібна фігурі F з коефіцієнтом .
3) Якщо фігура F1 подібна фігурі F2 з коефіцієнтом подібності k1, а фігура F2 подібна фігурі F3 з коефіцієнтом подібності k2, то фігура F1 подібна фігурі F3 з коефіцієнтом подібності k1· k2.
4) Відношення площ подібних фігур дорівнює квадрату коефіцієнта подібності.
Доведемо цю властивість для многокутників.
Нехай F і F' — це два подібні n-кутники з коефіцієнтом подібності k, a S i S' — їхні площі (рис. 175).
З'ясуємо, чому дорівнює відношення їхніх площ. Розіб'ємо n-кутник F на п трикутників Δ1, Δ2, ..., Δп, сума площ яких дорівнює S.
Перетворення подібності, яке переводить F у F', переводить ці трикутники у трикутники , , ..., , сума площ яких дорівнює S'.
Оскільки з урахуванням коефіцієнта подібності k основи і висоти трикутників Δ1, Δ2, ..., Δn дорівнюють a1 і h1, а2 і h2, ..., ап і hп, то основи і висоти трикутників , , ..., дорівнюють відповідно ka1 і kh1, ka2 і kh2, ..., kan і khn. Тоді
S' = ka1 · kh1 + ka2 · kh2 + ... + kan · khn = k2= k2S.
Оскільки S' = k2S,.
Отже, площі подібних многокутників відносяться як квадрати їхніх відповідних лінійних розмірів.
Розв'язування вправ
1. Наведіть приклади подібних фігур.
2. Чи подібні будь-які рівні фігури?
3. Чи рівні будь-які подібні фігури? При якій умові подібні фігури рівні?
4. Про дві фігури відомо, що F2 * F1 і F1 * F2 з тим самим коефіцієнтом подібності k. Що можна сказати про значення коефіцієнта k і про фігури F1 і F2?
5. Згадайте означення подібних трикутників.
6. Сформулюйте ознаки подібності трикутників.
IV. Закріплення й осмислення нового матеріалу
Розв'язування задач
1. Сторони двох правильних n-кутників відносяться як а : b. Як відносяться їхні площі? (Відповідь. а2 : b2)
2. Площі двох квадратів відносяться як 3 : 5. Чому дорівнює сторона меншого квадрата, якщо сторона більшого квадрата дорівнює 10 см? (Відповідь. (см))
3. Площа меншого многокутника дорівнює 45 см2. Чому дорівнює площа більшого многокутника, подібного даному, якщо відповідні сторони многокутників дорівнюють 10 см і 15 см? (Відповідь. 101,25 см2)
4. Відповідні сторони двох подібних многокутників відносяться як а : b. Площа першого многокутника дорівнює S. Знайдіть площу другого многокутника. (Відповідь. )
5. Периметри подібних многокутників відносяться як 5 : 7, а різниця площ дорівнює 864 см2. Знайдіть площі многокутників.
Розв'язання
Нехай S см2 — площа меншого многокутника, тоді (S + 864) см2 — площа більшого многокутника. Згідно з теоремою маємо , тоді 49S = 25(S + 864); 24S = 21600; S = 900 см2.
Отже, площа меншого многокутника дорівнює 900 см2, а площа більшого 900 + 864 = 1764 (см2).
Відповідь. 900 см2 і 1764 см2.
6. Пряма, перпендикулярна до висоти трикутника, ділить його площу навпіл. Знайдіть відстань від цієї прямої до вершини трикутника, з якої проведено висоту, якщо вона дорівнює h.
Розв'язання
Нехай у трикутнику ABC (рис. 176) BDAC, FKBD, SΔFВК * SΔFKC, BD = h.
ΔFBK * ΔАВС (за двома кутами), тоді . Враховуючи, що SΔABC = 2SΔFBK BD = h, маємо = , звідси BS2 = BS, або BS = = .
Відповідь. .
7. На стороні АВ трикутника ABC взято довільну точку D і з неї проведено відрізки DE і DF так, що DE || AC, DF || BC. Знайдіть площу трикутника CEF, якщо площі трикутників ADF і BED відповідно дорівнюють S1 і S2 (рис. 177).
Розв'язання
Нехай S — площа трикутника CEF. ΔADF * ΔBED (оскільки кожний із них подібний трикутнику ABC.
Отже, , звідси .
Висоти трикутників ADF і FEC, проведені до сторін AF і FC, рівні між собою.
Тоді , звідси S = S1 = .
Відповідь. .
V. Домашнє завдання
1. Вивчити теоретичний матеріал.
2. Розв'язати задачі.
1) Через середину висоти трикутника перпендикулярно до неї проведено пряму. У якому відношенні вона ділить площу трикутника?
2) Периметри правильних л-кутників відносяться як а : b. Як відносяться їхні площі?
VI. Підбиття підсумків уроку
Завдання класу
1. Сформулюйте теорему про відношення площ подібних фігур.
2. Сторони рівносторонніх трикутників дорівнюють 5 см і 10 см. Чому дорівнює відношення їхніх площ? (Відповідь. 1 : 4)
3. Периметри двох подібних многокутників відносяться як 3 : 5. Площа більшого многокутника дорівнює 40 см2. Знайдіть площу другого многокутника. (Відповідь. 14,4 см2)
Попередня
Зміст
Наступна
Відвідайте наш новий сайт - Матеріали для Нової української школи - планування, розробки уроків, дидактичні та методичні матеріали, підручники та зошити
Мама мой взяла листок,
И загнула уголок,
Угол вот такой у взрослых
Называется ПРЯМЫМ.
Если угол уже -ОСТРЫМ,
Если шире, то -ТУПЫМ.
Я ОСТРЫЙ - начертить хочу,
Сейчас возьму и начерчу.
Веду из точки две прямых,
Как будто два луча,
И видим ОСТРЫЙ УГОЛ мы,
как остриё меча.
А для УГЛА ТУПОГО
Всё повторяем снова:
Из точки две прямых ведём,
Но их пошире разведём.
На чертёж мой посмотри,
Он, как ножницы внутри,
Если их за два кольца
Мы раздвинем до конца.
ТРЕУГОЛЬНИК
Самолёт летит по небу,
Треугольное крыло,
На моём велосипеде,
Треугольное седло,
Есть такой предмет - угольник,
И всё это - ТРЕУГОЛЬНИК.
Тут мама три спички
На стол положила
И мне треугольник
Из спичек сложила.
А в это время я чертил
И наблюдал за мамою,
Я три прямых соединил
И сделал то же самое.
КВАДРАТ
Пришёл из школы старший брат,
Из спичек выложил квадрат.
Дала мне мама шоколад,
Я дольку отломил - квадрат.
И стол -квадрат, и стул - квадрат,
И на стене плакат - квадрат,
Доска, где шахматы стоят,
И клетка каждая - квадрат,
Стоят там кони и слоны,
Фигуры боевые.
КВАДРАТ - четыре стороны,
Все стороны его равны,
И все углы прямые.
ОКРУЖНОСТЬ и КРУГ
Мы живём с братишкой дружно,
Нам так весело вдвоём,
Мы на лист поставим кружку,
Обведём карандашом.
Получилось то, что нужно -
Называется ОКРУЖНОСТЬ.
Мой брат по рисованию
Себя считает матером,
Всё, что внутри окружности,
Закрасил он фломастером.
Вот вам красный круг, кружок,
По краю синий ободок.
КРУГ - тарелка, колесо,
ОКРУЖНОСТЬ - обруч, поясок.
ОКРУЖНОСТЬ - очертанье КРУГА.
Я смотрю на наш листок,
Стал искать у круга угол,
Но найти его не смог.
Брат смеётся - вот дела!
Да у круга нет угла,
У тарелки и монеты
Не найдёшь углов, их нету.
ТРАПЕЦИЯ
Трапеци, трапеция,
Фигура есть такая,
А я её не знаю.
Ты где живёшь, трапеция,
В Америке, в Китае?
Может, за трапецией
Поехать надо в Грецию?
Мама говорит: - Не надо,
Трапеция с тобою рядом.
Развею я твою тоску,
Ты подожди минутку.
И на гладильную доску
Укладывает юбку,
По ней проводит утюжком,
Чтоб не топорщилась мешком:
- Вот тебе ТРАПЕЦИЯ,
Не стоит ехать в Грецию.
ОВАЛ
А как нарисовать овал?
На брата я позвал.
Брат взял фломастер и искусно
Мне овал нарисовал:
Ты слегка окружность сплюсни,
Получается ОВАЛ.
Сколько раз его видал,
В ванной зеркало -овал!
Овал и блюдо, и яйцо.
Мама говорит :-Лицо
У тебя овальное.
Пусть будет овальное,
Лишь бы не печальное.
Мы рассмеялись и в овале
Рожицу нарисовали.
Овал - окружность удлинённая
И рожица в ней удивлённая.
выберай
ОбъяІншими словами: дві фігури називаються подібними, якщо вони переводяться одна в одну перетворенням подібності. Подібність фігур, як і подібність трикутників, позначають спеціальним знаком: *. Запис F * F1 читається як «фігура F подібна фігурі F1».
З означення подібності фігур випливає, що рівні фігури — подібні (коефіцієнт подібності дорівнює одиниці).
Властивості подібних фігур
1) Кожна фігура подібна собі (коефіцієнт подібності дорівнює 1).
2) Якщо фігура F подібна фігурі F1 з коефіцієнтом подібності k, то фігура F1 подібна фігурі F з коефіцієнтом .
3) Якщо фігура F1 подібна фігурі F2 з коефіцієнтом подібності k1, а фігура F2 подібна фігурі F3 з коефіцієнтом подібності k2, то фігура F1 подібна фігурі F3 з коефіцієнтом подібності k1· k2.
4) Відношення площ подібних фігур дорівнює квадрату коефіцієнта подібності.
Доведемо цю властивість для многокутників.
Нехай F і F' — це два подібні n-кутники з коефіцієнтом подібності k, a S i S' — їхні площі (рис. 175).
З'ясуємо, чому дорівнює відношення їхніх площ. Розіб'ємо n-кутник F на п трикутників Δ1, Δ2, ..., Δп, сума площ яких дорівнює S.
Перетворення подібності, яке переводить F у F', переводить ці трикутники у трикутники , , ..., , сума площ яких дорівнює S'.
Оскільки з урахуванням коефіцієнта подібності k основи і висоти трикутників Δ1, Δ2, ..., Δn дорівнюють a1 і h1, а2 і h2, ..., ап і hп, то основи і висоти трикутників , , ..., дорівнюють відповідно ka1 і kh1, ka2 і kh2, ..., kan і khn. Тоді
S' = ka1 · kh1 + ka2 · kh2 + ... + kan · khn = k2= k2S.
Оскільки S' = k2S,.
Отже, площі подібних многокутників відносяться як квадрати їхніх відповідних лінійних розмірів.
Розв'язування вправ
1. Наведіть приклади подібних фігур.
2. Чи подібні будь-які рівні фігури?
3. Чи рівні будь-які подібні фігури? При якій умові подібні фігури рівні?
4. Про дві фігури відомо, що F2 * F1 і F1 * F2 з тим самим коефіцієнтом подібності k. Що можна сказати про значення коефіцієнта k і про фігури F1 і F2?
5. Згадайте означення подібних трикутників.
6. Сформулюйте ознаки подібності трикутників.
IV. Закріплення й осмислення нового матеріалу
Розв'язування задач
1. Сторони двох правильних n-кутників відносяться як а : b. Як відносяться їхні площі? (Відповідь. а2 : b2)
2. Площі двох квадратів відносяться як 3 : 5. Чому дорівнює сторона меншого квадрата, якщо сторона більшого квадрата дорівнює 10 см? (Відповідь. (см))
3. Площа меншого многокутника дорівнює 45 см2. Чому дорівнює площа більшого многокутника, подібного даному, якщо відповідні сторони многокутників дорівнюють 10 см і 15 см? (Відповідь. 101,25 см2)
4. Відповідні сторони двох подібних многокутників відносяться як а : b. Площа першого многокутника дорівнює S. Знайдіть площу другого многокутника. (Відповідь. )
5. Периметри подібних многокутників відносяться як 5 : 7, а різниця площ дорівнює 864 см2. Знайдіть площі многокутників.
Розв'язання
Нехай S см2 — площа меншого многокутника, тоді (S + 864) см2 — площа більшого многокутника. Згідно з теоремою маємо , тоді 49S = 25(S + 864); 24S = 21600; S = 900 см2.
Отже, площа меншого многокутника дорівнює 900 см2, а площа більшого 900 + 864 = 1764 (см2).
Відповідь. 900 см2 і 1764 см2.
6. Пряма, перпендикулярна до висоти трикутника, ділить його площу навпіл. Знайдіть відстань від цієї прямої до вершини трикутника, з якої проведено висоту, якщо вона дорівнює h.
Розв'язання
Нехай у трикутнику ABC (рис. 176) BDAC, FKBD, SΔFВК * SΔFKC, BD = h.
ΔFBK * ΔАВС (за двома кутами), тоді . Враховуючи, що SΔABC = 2SΔFBK BD = h, маємо = , звідси BS2 = BS, або BS = = .
Відповідь. .
7. На стороні АВ трикутника ABC взято довільну точку D і з неї проведено відрізки DE і DF так, що DE || AC, DF || BC. Знайдіть площу трикутника CEF, якщо площі трикутників ADF і BED відповідно дорівнюють S1 і S2 (рис. 177).
Розв'язання
Нехай S — площа трикутника CEF. ΔADF * ΔBED (оскільки кожний із них подібний трикутнику ABC.
Отже, , звідси .
Висоти трикутників ADF і FEC, проведені до сторін AF і FC, рівні між собою.
Тоді , звідси S = S1 = .
Відповідь. .
V. Домашнє завдання
1. Вивчити теоретичний матеріал.
2. Розв'язати задачі.
1) Через середину висоти трикутника перпендикулярно до неї проведено пряму. У якому відношенні вона ділить площу трикутника?
2) Периметри правильних л-кутників відносяться як а : b. Як відносяться їхні площі?
VI. Підбиття підсумків уроку
Завдання класу
1. Сформулюйте теорему про відношення площ подібних фігур.
2. Сторони рівносторонніх трикутників дорівнюють 5 см і 10 см. Чому дорівнює відношення їхніх площ? (Відповідь. 1 : 4)
3. Периметри двох подібних многокутників відносяться як 3 : 5. Площа більшого многокутника дорівнює 40 см2. Знайдіть площу другого многокутника. (Відповідь. 14,4 см2)
Попередня
Зміст
Наступна
Відвідайте наш новий сайт - Матеріали для Нової української школи - планування, розробки уроків, дидактичні та методичні матеріали, підручники та зошити
снение: